Clinical Focus ›› 2024, Vol. 39 ›› Issue (3): 269-273.doi: 10.3969/j.issn.1004-583X.2024.03.013
Previous Articles Next Articles
Received:
2023-03-30
Online:
2024-03-20
Published:
2024-06-12
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.03.013
[1] |
Bordes C, Sargurupremraj M, Mishra A, et al. Genetics of common cerebral small vessel disease[J]. Nat Rev Neurol, 2022, 18(2):84-101.
doi: 10.1038/s41582-021-00592-8 pmid: 34987231 |
[2] |
Mancuso M, Arnold M, Bersano A, et al. Monogenic cerebral small-vessel diseases: Diagnosis and therapy. Consensus recommendations of the European Academy of Neurology[J]. Eur J Neurol, 2020, 27(6):909-927.
doi: 10.1111/ene.14183 pmid: 32196841 |
[3] | Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, et al. Cerebral small vessel disease: A review[J]. Adv Clin Exp Med, 2021, 30(3):349-356. |
[4] | Litak J, Mazurek M, Kulesza B, et al. Cerebral small vessel disease[J]. Int J Mol Sci, 2020, 21(24): 9729. |
[5] |
Levit A, Hachinski V, Whitehead SN. Neurovascular unit dysregulation, white matter disease, and executive dysfunction: The shared triad of vascular cognitive impairment and Alzheimer disease[J]. Geroscience, 2020, 42(2):445-465.
doi: 10.1007/s11357-020-00164-6 pmid: 32002785 |
[6] | 吴睿, 甄娜, 王欣丽, 等. 老年脑小血管病患者认知障碍发生率及影响因素分析[J]. 中国神经免疫学和神经病学杂志, 2022, 29(2):89-92+97. |
[7] | 袁锡球, 冯辉庭, 陈仰昆, 等. 急性基底节区梗死的脑小血管病总负荷与认知功能损害相关性分析[J]. 中国神经精神疾病杂志, 2022, 48(2):65-71. |
[8] |
Rost NS, Brodtmann A, Pase MP, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8):1252-1271.
doi: 10.1161/CIRCRESAHA.122.319951 pmid: 35420911 |
[9] | Szcze'sniak D, Rymaszewska J, Zimny A, et al. “Cerebral small vessel disease and other influential factors of cognitive impairment in the middle-aged: A long-term observational cohort PURE-MIND study in Poland”[J]. Geroscience, 2021, 43(1):279-295. |
[10] | 谢鸿阳, 赵弘轶, 夏翠俏, 等. 脑小血管病患者双重任务行走步态参数的研究[J]. 中华老年心脑血管病杂志, 2022, 24(7):717-720. |
[11] |
Smith EE, Markus HS. New treatment approaches to modify the course of cerebral small vessel diseases[J]. Stroke, 2020, 51(1):38-46.
doi: 10.1161/STROKEAHA.119.024150 pmid: 31752610 |
[12] | 白一帆, 侯清华. 脑小血管病影像学标志物自动测量研究进展[J]. 中国神经精神疾病杂志, 2022, 48(3):172-177. |
[13] |
Ma Y, Yilmaz P, Bos D, et al. Blood pressure variation and subclinical brain disease[J]. J Am Coll Cardiol, 2020, 75(19):2387-2399.
doi: S0735-1097(20)34677-5 pmid: 32408975 |
[14] |
Ma Y, Song A, Viswanathan A, et al. Blood pressure variability and cerebral small vessel disease: A systematic review and meta-analysis of population-based cohorts[J]. Stroke, 2020, 51(1):82-89.
doi: 10.1161/STROKEAHA.119.026739 pmid: 31771460 |
[15] | 段雅鑫, 滕振杰, 胡明, 等. 脑小血管病动态血压变异性与脑小血管病影像总负荷的相关性[J]. 中国神经精神疾病杂志, 2022, 48(6):321-327. |
[16] | 胡紫薇, 胡可, 周俊杰, 等. 血管性痴呆的康复治疗研究进展[J]. 赣南医学院学报, 2021, 41(7):731-734+739. |
[17] | Tortora C, Di Crosta A, La Malva P, et al. Virtual reality and cognitive rehabilitation for older adults with mild cognitive impairment: A systematic review[J]. Ageing Res Rev, 2023, 93:102146. |
[18] | 范伟超, 曾庆, 张卓栋, 等. 虚拟现实技术在脑卒中后认知功能障碍康复中的研究进展[J]. 中国康复, 2022, 37(12):760-764. |
[19] |
Das R, Sengupta T, Roy S, et al. Convolvulus pluricaulis extract can modulate synaptic plasticity in rat brain hippocampus[J]. Neuroreport, 2020, 31(8):597-604.
doi: 10.1097/WNR.0000000000001446 pmid: 32282574 |
[20] | Mattam U, Talari NK, Paripati AK, et al. Kisspeptin preserves mitochondrial function by inducing mitophagy and autophagy in aging rat brain hippocampus and human neuronal cell line[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1):118852. |
[21] | 林巧茂, 李阔, 项宁. 视觉反馈平衡训练对脑卒中患者认知功能相关静息态脑网络的影响[J]. 中国实用神经疾病杂志, 2022, 25(3):347-354. |
[22] | Baek CY, Chang WN, Park BY, et al. Effects of dual-task gait treadmill training on gait ability, dual-task interference, and fall efficacy in people with stroke: A randomized controlled trial[J]. Phys Ther, 2021, 101(6): pzab067. |
[23] |
Timmermans C, Roerdink M, Meskers CGM, et al. Walking-adaptability therapy after stroke: Results of a randomized controlled trial[J]. Trials, 2021, 22(1):923.
doi: 10.1186/s13063-021-05742-3 pmid: 34911566 |
[24] | Jackman M, Sakzewski L, Morgan C, et al. Interventions to improve physical function for children and young people with cerebral palsy: International clinical practice guideline[J]. Dev Med Child Neurol, 2022, 64(5):536-549. |
[25] | Kesikburun S. Non-invasive brain stimulation in rehabilitation[J]. Turk J Phys Med Rehabil, 2022, 68(1):1-8. |
[26] |
Veldema J, Gharabaghi A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke[J]. J Neuroeng Rehabil, 2022, 19(1):84.
doi: 10.1186/s12984-022-01062-y pmid: 35922846 |
[27] |
Zhang N, Xing M, Wang Y, et al. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia[J]. Neuroscience, 2015, 311:284-291.
doi: 10.1016/j.neuroscience.2015.10.038 pmid: 26518460 |
[28] |
André S, Heinrich S, Kayser F, et al. At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia[J]. J Neurol Sci, 2016, 369:185-190.
doi: S0022-510X(16)30478-6 pmid: 27653887 |
[29] | 曹珊珊. 经颅直流电刺激干预脑小血管病认知障碍的临床疗效和神经机制[D]. 安徽医科大学, 2023. |
[30] | 刘存志. 中医治未病理论在慢性病针灸康复治疗中的应用——以血管性痴呆为例[J]. 康复学报, 2022, 32(2):95-99. |
[31] |
Jiao Y, Wang J, Jia Y, et al. Remote ischemic preconditioning protects against cerebral ischemia injury in rats by upregulating miR-204-5p and activating the PINK1/Parkin signaling pathway[J]. Metab Brain Dis, 2022, 37(4):945-959.
doi: 10.1007/s11011-022-00910-z pmid: 35067796 |
[32] | Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: An overview[J]. Int J Mol Sci, 2021, 22(4): 2153. |
[33] | Gaβner H, Trutt E, Seifferth S, et al. Treadmill training and physiotherapy similarly improve dual task gait performance: A randomized-controlled trial in Parkinson's disease[J]. J Neural Transm (Vienna), 2022, 129(9):1189-1200. |
[34] |
Yang Y, Wang G, Zhang S, et al. Efficacy and evaluation of therapeutic exercises on adults with Parkinson's disease: A systematic review and network meta-analysis[J]. BMC Geriatr, 2022, 22(1):813.
doi: 10.1186/s12877-022-03510-9 pmid: 36271367 |
[35] | Zhao W, You H, Jiang S, et al. Effect of Pro-kin visual feedback balance training system on gait stability in patients with cerebral small vessel disease[J]. Medicine (Baltimore), 2019, 98(7):e14503. |
[36] | Krämer SD, Schuhmann MK, Volkmann J, et al. Deep brain stimulation in the subthalamic nucleus can improve skilled forelimb movements and retune dynamics of striatal networks in a rat stroke model[J]. Int J Mol Sci, 2022, 23(24):15862. |
[37] | Krämer SD, Schuhmann MK, Schadt F, et al. Changes of cerebral network activity after invasive stimulation of the mesencephalic locomotor region in a rat stroke model[J]. Exp Neurol, 2022, 347:113884. |
[38] |
Koch G, Bonnì S, Casula EP, et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: A randomized clinical trial[J]. JAMA Neurol, 2019, 76(2):170-178.
doi: 10.1001/jamaneurol.2018.3639 pmid: 30476999 |
[39] | Jaqueline da Cunha M, Rech KD, Salazar AP, et al. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis[J]. Ann Phys Rehabil Med, 2021, 64(1):101388. |
[40] |
周雯露, 余姜璇, 王俊杰, 等. 完全沉浸式虚拟现实技术对脑卒中患者肢体功能影响的Meta分析[J]. 中华护理杂志, 2023, 58(17):2158-2165.
doi: 10.3761/j.issn.0254-1769.2023.17.015 |
[41] | Wang X, Qiu J, Zhou Y, et al. The Effects of VR-assisted and overground gait adaptation training on balance and walking ability in stroke patients[J]. Am J Phys Med Rehabil, 103(6):480-487. |
[42] | 何智捷, 姜淑云, 张韶辉, 等. 虚拟现实认知与运动联合对老年脑卒中患者康复期的影响[J]. 中国老年学杂志, 2023, 43(22):5500-5504. |
[43] | Mehrholz J, Thomas S, Kugler J, et al. Electromechanical-assisted training for walking after stroke[J]. Cochrane Database Syst Rev, 2020, 10(10):Cd006185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||