Clinical Focus ›› 2023, Vol. 38 ›› Issue (11): 1034-1037.doi: 10.3969/j.issn.1004-583X.2023.11.014
Previous Articles Next Articles
Received:
2023-01-24
Online:
2023-11-20
Published:
2024-01-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.11.014
[1] |
Li L, Ren S, Hao X, et al. Efficacy of minimally invasive intervention in patients with acute cerebral infarction[J]. J Cardiovasc Pharmacol, 2019, 73(1):22-26.
doi: 10.1097/FJC.0000000000000625 pmid: 30540689 |
[2] | 赵局, 王桂华, 李陶然, 等. 单侧大脑中动脉重度狭窄及闭塞患者侧支循环形成的影响因素及其相关性分析[J]. 卒中与神经疾病, 2020, 27(1):42-46. |
[3] | 葛永桂, 郭婷婷, 王玉洁. 影响大脑中动脉狭窄后侧支循环建立的因素及其研究进展[J]. 中华老年心脑血管病杂志, 2019, 21(2):211-213. |
[4] | Zbinden S, Clavijo LC, Kantor B, et al. Interanimal variability in preexisting collaterals is a major factor determining outcome in experimental angiogenesis trials[J]. Am J Physiol Heart Circ Physiol, 2007, 292(4):H1891. |
[5] | 王燕楠, 郭兴华. 缺血性脑卒中侧支循环影响因素的研究进展[J]. 中西医结合心脑血管病杂志, 2022, 20(1):83-85. |
[6] | Gan L, Liao S, Xing Y, et al. The regulatory functions of lncrnas on angiogenesis following ischemic stroke[J]. Front Mol Neurosci, 2021, 4(13):613976. |
[7] |
Sun P, Zhang K, Hassan SH, et al. Endothelium-targeted deletion of microrna-15a/16-1 promotes post-stroke angiogenesis and improves long-term neurological recovery[J]. Circ Res, 2020, 126(8):1040-1057.
doi: 10.1161/CIRCRESAHA.119.315886 URL |
[8] |
Fan J, Xu W, Nan S, et al. MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway[J]. Cerebrovasc Dis, 2020, 49(1):39-54.
doi: 10.1159/000503950 pmid: 31927543 |
[9] | 唐蕾, 肖巨雄, 曾飞跃. 血清音猬因子和miR-199a与缺血性脑卒中患者侧支循环形成的关系[J]. 中华实用诊断与治疗杂志, 2021, 35(2):176-180. |
[10] |
Hao X, Wang S, Jiang C, et al. The relation between plasma miR-126 levels and cerebral collateral circulation in patients with intracranial arterial stenosis[J]. Neurol Neurochir Pol, 2021, 55(3):281-288.
doi: 10.5603/PJNNS.a2021.0019 pmid: 33559872 |
[11] | 何亚玲, 沈雪阳, 胡志林, 等. 大动脉粥样硬化与心源性栓塞所致急性前循环颅内大血管闭塞患者侧支循环的差异及其影响因素[J]. 解放军医学杂志, 2022, 47(5):479-485. |
[12] |
Hecht N, He J, Kremenetskaia I, et al. Cerebral hemodynamic reserve and vascular remodeling in C57/BL6 mice are influenced by age[J]. Stroke, 2012, 43(11):3052-3062.
doi: 10.1161/STROKEAHA.112.653204 pmid: 22923448 |
[13] |
Arsava EM, Vural A, Akpinar E, et al. The detrimental effect of aging on leptomeningeal collaterals in ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2014, 23(3):421-426.
doi: 10.1016/j.jstrokecerebrovasdis.2013.03.014 pmid: 23583014 |
[14] | 皮成慧, 王君, 张荣举, 等. 前循环慢性闭塞患者颅内侧支循环形成的影响因素[J]. 中国脑血管病杂志, 2018, 15(11):567-571. |
[15] | Chan LSL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation[J]. Cereb Blood Flow Metab, 2018, 38(12):2129-2149. |
[16] |
Wufuer A, Mijiti P, Abudusalamu R, et al. Blood pressure and collateral circulation in acute ischemic stroke[J]. Herz, 2019, 44(5):455-459.
doi: 10.1007/s00059-018-4691-5 pmid: 29556676 |
[17] |
Rusanen H, Saarinen JT, Sillanpää N. The Association of Blood Pressure and Collateral Circulation in Hyperacute Ischemic Stroke Patients Treated with Intravenous Thrombolysis[J]. Cerebrovasc Dis, 2015, 39(2):130-137.
doi: 10.1159/000371339 pmid: 25660943 |
[18] | Jiang B, Churilov L, Kanesan L, et al. Blood pressure may be associated with arterial collateralization in anterior circulation ischemic stroke before acute reperfusion therapy[J]. Stroke, 2017, 19(2):222-228. |
[19] |
Deepika A, Devi BI, Shukla DP, et al. Neuroimmunology of traumatic brain injury: a longitudinal study of interdependency of inflammatory markers and heart rate variability in severe traumatic brain injury[J]. J Neurotrauma, 2018, 35(10):1124-1131.
doi: 10.1089/neu.2017.5151 URL |
[20] | 刘亚卫. MCA狭窄或闭塞患者侧支循环形成状况的影响因素分析[D]. 邯郸: 河北工程大学, 2021. |
[21] |
Akamatsu Y, Nishijima Y, Lee CC, et al. Impaired leptomeningeal collateral flow contributes to the poor outcome following experimental stroke in the type 2 diabetic mice[J]. J Neurosci, 2015, 35(9):3851-3864.
doi: 10.1523/JNEUROSCI.3838-14.2015 pmid: 25740515 |
[22] | 蒋超, 王月娟, 张静, 等. 急性颈内动脉系统脑梗死患者侧支循环建立情况与预后关系的研究[J]. 中华行为医学与脑科学杂志, 2017, 26(7):615-619. |
[23] |
Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals[J]. Nat Med, 2000, 6(9):1004-1010.
doi: 10.1038/79510 pmid: 10973320 |
[24] |
Kornowski R. Collateral formation and clinical variables in obstructive coronary artery disease: the influence of hypercholesterolemia and diabetes mellitus[J]. Coronary Artery Disease, 2003, 14(1):61.
pmid: 12629327 |
[25] |
Kaplan P, Tatarkova Z, Sivonova MK, et al. Homocysteine and mitochondria in cardiovascular and cerebrovascular systems[J]. Int J Mol Sci, 2020, 21(20):7698.
doi: 10.3390/ijms21207698 URL |
[26] |
Catena C, Colussi G, Url-Michitsch M, et al. Subclinical carotid artery disease and plasma homocysteine levels in patients with hypertension[J]. J Am Soc Hypertens, 2015, 9(3):167-175.
doi: 10.1016/j.jash.2014.12.020 pmid: 25660367 |
[27] | 高秀先. 缺血性脑血管病患者侧支循环建立的相关影响因素及与神经功能损伤程度的关系分析[J]. 中国当代医药, 2020, 27(33):76-79. |
[28] |
Shin JY, Lee HR, Shim JY. Significance of high-normal serum uric acid level as a risk factor for arterial stiffness in healthy Korean men[J]. Vasc Med, 2012, 17(1):37-43.
doi: 10.1177/1358863X11434197 pmid: 22363017 |
[29] |
He G, Wei L, Lu H, et al. Advances in imaging acute ischemic stroke: Evaluation before thrombectomy[J]. Rev Neurosci, 2021, 32(5):495-512.
doi: 10.1515/revneuro-2020-0061 URL |
[30] |
Shin JY, Lee HR, Shim JY. Significance of high-normal serum uric acid level as a risk factor for arterial stiffness in healthy Korean men[J]. Vasc Med, 2012, 17(1):37-43.
doi: 10.1177/1358863X11434197 pmid: 22363017 |
[31] | 赵萍, 霍会永, 曹凌, 等. 急性脑梗死患者血清尿酸水平与颅内动脉重度狭窄或闭塞的侧支循环关系分析[J]. 脑与神经疾病杂志, 2019, 27(9):542-545. |
[32] |
Liu H, Reynolds GP, Wang W, et al. Lower uric acid is associated with poor short-term outcome and a higher frequency of posterior arterial involvement in ischemic stroke[J]. Neurol Sci, 2018, 39(6):1117-1119.
doi: 10.1007/s10072-018-3307-4 pmid: 29511962 |
[33] |
Liu X, Pu Y, Pan Y, et al. Multi-mode CT in the evaluation of leptomeningeal collateral flow and the related factors: comparing with digital subtraction angiography[J]. Neurol Res, 2016, 38(6):504-509.
doi: 10.1080/01616412.2016.1187828 pmid: 27320244 |
[34] | 刘天, 刘媛媛. 大动脉粥样硬化型脑梗死患者颅内血管侧支循环影响因素的研究[J]. 中华老年心脑血管病杂志, 2020, 22(7):762-763. |
[35] |
Alemseged F, Hoeven E, Giuliano FD, et al. Response to late-window endovascular revascularization is associated with collateral status in basilar artery occlusion[J]. Stroke, 2019, 50(6):1415-1422.
doi: 10.1161/STROKEAHA.118.023361 |
[36] |
Kitagawa K, Yagita Y, Sasaki T, et al. Chronic mild reduction of cerebral perfusion pressure induces ischemic tolerance in focal cerebral ischemia[J]. Stroke, 2005, 36(10):2270-2274.
pmid: 16141423 |
[37] |
Saarinen JT, Rusanen H, Sillanpää N. Collateral score complements clot location in predicting the outcome of intravenous thrombolysis[J]. AJNR Am J Neuroradiol, 2014, 35(10):1892-1896.
doi: 10.3174/ajnr.A3983 URL |
[38] |
Samim E, Ali E, Imran O, et al. Endocan: A novel biomarker associated with well-developed coronary collateral circulation in patients with stable angina and chronic total occlusion[J]. J Thromb Thrombolysis, 2017, 43(1):60-67.
doi: 10.1007/s11239-016-1424-6 URL |
[39] |
Patabendige A, Singh A, Jenkins S, et al. Astrocyte activation in neurovascular damage and repair following ischaemic stroke[J]. Int J Mol Sci, 2021, 22(8):4280.
doi: 10.3390/ijms22084280 URL |
[40] |
Yang B, Ding Y, Liu X, et al. Matrix metallopeptidase 9 and placental growth factor may correlate with collateral status based on whole-brain perfusion combined with multiphase computed tomography angiography[J]. Neurol Res, 2021, 43(10):838-845.
doi: 10.1080/01616412.2021.1939238 URL |
[41] |
Mechtouff L, Bochaton T, Paccalet A, et al. Matrix metalloproteinase-9 and monocyte chemoattractant protein-1 are associated with collateral status in acute ischemic stroke with large vessel occlusion[J]. Stroke, 2020, 51(7):2232-2235.
doi: 10.1161/STROKEAHA.120.029395 pmid: 32568655 |
[42] |
Cheng YH, Jiang YF, Qin C, et al. Galectin-1 contributes to vascular remodeling and blood flow recovery after cerebral ischemia in mice[J]. Transl Stroke Res, 2022, 13(1):160-170.
doi: 10.1007/s12975-021-00913-5 |
[43] | 王利军, 王建平, 李楠, 等. 血清TGF-β1水平与急性脑梗死侧支循环及预后相关性分析[J]. 中国实用神经疾病杂志, 2017, 20(17):1-3. |
[44] | Yu F, Feng X, Li X, et al. Association of plasma metabolic biomarker sphingosine-1-phosphate with cerebral collateral circulation in acute ischemic stroke[J]. Front Physiol, 2021, 19(12):720672. |
[45] |
Iwasawa E, Ishibashi S, Suzuki M, et al. Sphingosine-1-phosphate receptor 1 activation enhances leptomeningeal collateral development and improves outcome after stroke in mice[J]. J Stroke Cerebrovasc Dis, 2018, 27(5):1237-1251.
doi: S1052-3057(17)30659-6 pmid: 29337049 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||