临床荟萃 ›› 2021, Vol. 36 ›› Issue (11): 1034-1040.doi: 10.3969/j.issn.1004-583X.2021.11.015
收稿日期:
2021-07-23
出版日期:
2021-11-20
发布日期:
2021-12-01
通讯作者:
李英
E-mail:liyinghebei@126.com
Received:
2021-07-23
Online:
2021-11-20
Published:
2021-12-01
摘要:
糖尿病肾病(diabetic nephropathy, DN)是糖尿病最严重的微血管并发症之一,现已成为终末期肾脏病的重要病因,因此防治DN的发生和发展是当今需要迫切解决的重要课题。钠-葡萄糖协同转运蛋白2(sodium-dependent glucose transporters 2, SGLT2)抑制剂(SGLT2 inhibition, SGLT2i)是一种新型降糖药物,可通过抑制肾脏近端小管的重吸收和促进尿中葡萄糖的排泄来降低血糖,被广泛用于2型糖尿病(diabetes mellitus type 2,T2DM)的治疗。SGLT2i不仅可以降低血糖,还可以保护肾脏,延缓肾功能衰竭的进展,改善患者生活质量。本文就SGLT2i对DN的肾脏保护作用机制作一综述,为DN的预防、治疗及新型降糖药物的应用提供理论基础。
中图分类号:
武肖珊, 李英. 钠-葡萄糖协同转运蛋白2抑制剂对糖尿病肾病保护作用的研究进展[J]. 临床荟萃, 2021, 36(11): 1034-1040.
[1] |
Koye DN, Magliano DJ, Nelson RG, et al. The global epidemiology of diabetes and kidney disease[J]. Adv Chronic Kidney Dis, 2018, 25(2):121-132.
doi: 10.1053/j.ackd.2017.10.011 URL |
[2] |
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017, 128:40-50.
doi: 10.1016/j.diabres.2017.03.024 URL |
[3] |
Huang YM, Xu D, Long J, et al. Spectrum of chronic kidney disease in China: A national study based on hospitalized patients from 2010 to 2015[J]. Nephrology (Carlton), 2019, 24(7):725-736.
doi: 10.1111/nep.2019.24.issue-7 URL |
[4] |
Ehrenkranz JR, Lewis NG, Kahn CR, et al. Phlorizin: A review[J]. Diab Metab Res Rev, 2005, 21(1):31-38.
doi: 10.1002/(ISSN)1520-7560 URL |
[5] |
Jung CH, Jang JE, Park JY. A novel therapeutic agent for type 2 diabetes mellitus: SGLT2 inhibitor[J]. Diab Metab J, 2014, 38(4):261-273.
doi: 10.4093/dmj.2014.38.4.261 URL |
[6] |
Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors[J]. Diabetologia, 2018, 61(10):2079-2086.
doi: 10.1007/s00125-018-4654-7 URL |
[7] |
Wilcox T, Block CD, Schwartzbard AZ, et al. Diabetic agents,from metformin to SGLT2 inhibitors and GLP1 receptor agonists: JACC focus seminar[J]. J Am Coll Cardiol, 2020, 75(16):1956-1974.
doi: S0735-1097(20)34464-8 pmid: 32327107 |
[8] |
Pfister M, Whaley JM, Zhang L, et al. Inhibition of SGLT2: A novel strategy for treatment of type 2 diabetes mellitus[J]. Clin Pharmacol Ther, 2011, 89(4):621-625.
doi: 10.1038/clpt.2011.16 pmid: 21346749 |
[9] |
Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes[J]. Lancet Diabetes Endocrinol, 2013, 1(2):140-151.
doi: 10.1016/S2213-8587(13)70050-0 URL |
[10] |
Fioretto P, Giaccari A, Sesti G. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus[J]. Cardiovasc Diabetol, 2015, 14:142.
doi: 10.1186/s12933-015-0297-x pmid: 26474563 |
[11] |
Pirklbauer M, Schupart R, Fuchs L, et al. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells[J]. Am J Physiol Renal Physiol, 2019, 316(3):F449-F462.
doi: 10.1152/ajprenal.00431.2018 URL |
[12] | Kaneto H, Obata A, Kimura T, et al. Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic beta-cell function and reduction of insulin resistance[J]. J Diab, 2017, 9(3):219-225. |
[13] |
Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion[J]. Nat Med, 2015, 21(5):512-517.
doi: 10.1038/nm.3828 |
[14] | Sargent J. Therapy: SGLT2 inhibitor dapagliflozin promotes glucagon secretion in alpha islet cells[J]. Nat Rev Endocrinol, 2015, 11(7):382. |
[15] |
Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypojournal to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans[J]. Diabetes, 2013, 62(10):3324-3328.
doi: 10.2337/db13-0604 pmid: 24065789 |
[16] |
Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: A randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Diabetes Endocrinol, 2013, 1(3):208-219.
doi: 10.1016/S2213-8587(13)70084-6 URL |
[17] |
Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin(CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial[J]. Lancet, 2013, 382(9896):941-950.
doi: 10.1016/S0140-6736(13)60683-2 URL |
[18] |
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14):977-986.
doi: 10.1056/NEJM199309303291401 URL |
[19] |
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33)[J]. Lancet, 1998, 352(9131):837-853.
doi: 10.1016/S0140-6736(98)07019-6 URL |
[20] |
Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group[J]. N Engl J Med, 1993, 329(20):1456-1462.
doi: 10.1056/NEJM199311113292004 URL |
[21] |
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation, 2014, 129(5):587-597.
doi: 10.1161/CIRCULATIONAHA.113.005081 pmid: 24334175 |
[22] |
Kasshihara N, Haruna Y, Kondeti VK, et al. Oxidative stress in diabetic nephropathy[J]. Curr Med Chem, 2010, 17(34):4256-4269.
doi: 10.2174/092986710793348581 URL |
[23] | 李嘉欣, 马婷婷, 南一, 等. 糖尿病肾病发病机制研究进展[J]. 临床肾脏病杂志, 2019, 19(11):860-864. |
[24] |
Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice[J]. Sci Rep, 2016, 6:26428.
doi: 10.1038/srep26428 URL |
[25] |
Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis[J]. Horm Metab Res, 2015, 47:686-692.
doi: 10.1055/s-0034-1395609 pmid: 25611208 |
[26] | Oelze M, Kröller-Schön S, Welschof P, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity[J]. PLoS One, 2014, 9(11):e112394. |
[27] |
Vazir A, Claggett B, Pitt B, et al. Prognostic importance of temporal changes in resting heart rate in heart failure and preserved ejection fraction: From the TOPCAT study[J]. JACC Heart Fail, 2017, 5(11):782-791.
doi: 10.1016/j.jchf.2017.08.018 URL |
[28] |
Bhatt DL, Bakris GL. Renal denervation for resistant hypertension[J]. N Engl J Med, 2014, 371(2):184.
doi: 10.1056/NEJMc1405215 URL |
[29] |
Rahman A, Hitomi H, Nishiyama A. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure[J]. Hypertens Res, 2017, 40(6):535-540.
doi: 10.1038/hr.2016.193 URL |
[30] |
Matthews VB, Elliot RH, Rudnicka C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2[J]. J Hypertens, 2017, 35(10):2059-2068.
doi: 10.1097/HJH.0000000000001434 pmid: 28598954 |
[31] |
Sano M. Hemodynamic effects of sodium-glucose cotransporter 2 inhibitors[J]. J Clin Med Res, 2017, 9(6):457-460.
doi: 10.14740/jocmr3011w URL |
[32] |
Kiuchi S, Hisatake S, Kabuki T, et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in a patient with heart failure: A case report[J]. Drug Discov Ther, 2018, 12(1):51-54.
doi: 10.5582/ddt.2017.01069 URL |
[33] |
Rafiq K, Fujisawa Y, Sherajee SJ, et al. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats[J]. Diabetologia, 2015, 58(12):2885-2898.
doi: 10.1007/s00125-015-3771-9 pmid: 26450431 |
[34] | Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity[J]. J Cardiol, 2018, 71(5):471-476. |
[35] |
Stefánsson BV, Heerspink HJL, Wheeler DC, et al. Correction of anemia by dapagliflozin in patients with type 2 diabetes[J]. J Diabetes Complications, 2020, 34(12):107729.
doi: 10.1016/j.jdiacomp.2020.107729 URL |
[36] | Park K, Mima A, Li Q, et al. Insulin decreases atherosclerosis by inducing endothelin receptor B expression[J]. JCI Insight, 2016, 1(6):e86574. |
[37] | Salim HM, Fukuda D, Yagi S, et al. Glycemic control with Ipragliflozin, a novel selective SGLT2 inhibitor, amelioratedendothelial dysfunctionin streptozotocin-induced diabetic mouse[J]. Front Cardiovasc Med, 2016, 3:43. |
[38] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128.
doi: 10.1056/NEJMoa1504720 URL |
[39] |
Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypojournal[J]. Diabetes Care, 2016, 39(7):1115-1122.
doi: 10.2337/dc16-0542 pmid: 27289124 |
[40] |
Gambhir D, Ananth S, Veeranan-Karmegam R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(4):2208-2217.
doi: 10.1167/iovs.11-8447 URL |
[41] |
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor[J]. Science, 2013, 339(6116):211-214.
doi: 10.1126/science.1227166 URL |
[42] |
Pessoa TD, Campos LC, Carraro-Lacroix L, et al. Functional role of glucose metabolism, osmoticstress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule[J]. J Am Soc Nephrol, 2014, 25(9):2028-2039.
doi: 10.1681/ASN.2013060588 URL |
[43] | Kohan DE, Fioretto P, Johnsson K, et al. The effect of dapagliflozin on renal function in patients with type 2 diabetes[J]. Nephrol, 2016, 29(3):391-400. |
[44] |
Sarashina A, Ueki K, Sasaki T, et al. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in Japanese patients with type 2 diabetes mellitus[J]. Clin Ther, 2014, 36(11):1606-1615.
doi: 10.1016/j.clinthera.2014.08.001 pmid: 25199997 |
[45] |
Petrykiv S, Sjstrm CD, Greasley PJ, et al. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function[J]. Clin J Am Soc Nephrol, 2017, 12(5) : 751-759.
doi: 10.2215/CJN.10180916 URL |
[46] |
Borg R, Persson F. Empagliflozin reduces albuminuria-a promise for better cardiorenal protection from the EMPA-REG OUTCOME trial[J]. Ann Transl Med, 2017, 5(23):478.
doi: 10.21037/atm URL |
[47] |
Carbone S, Dixon DL. The CANVAS program: Implications of canagliflozin on reducing cardiovascular risk in patients with type 2 diabetes mellitus[J]. Cardiovasc Diabetol, 2019, 18(1):64.
doi: 10.1186/s12933-019-0869-2 URL |
[48] |
Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(8):606-617.
doi: 10.1016/S2213-8587(19)30180-9 URL |
[49] |
Perkovic V, Jardine MJ, Neal B, et al. CREDENCE trial investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306.
doi: 10.1056/NEJMoa1811744 URL |
[50] |
American Diabetes Association. Microvascular complications and foot care: Standards of Medical Care in Diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1):S151-S167.
doi: 10.2337/dc21-S011 URL |
[51] |
Wanner C, Inzucchi SE, Lachin JM, et al. EMPA-REG OUTCOME investigators. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):323-334.
doi: 10.1056/NEJMoa1515920 URL |
[52] |
Neuen BL, Ohkuma T, Neal B, et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function: Data from the CANVAS program[J]. Circulation, 2018, 138:1537-1550.
doi: 10.1161/CIRCULATIONAHA.118.035901 URL |
[53] | 纪立农, 郭立新, 郭晓蕙, 等. 钠-葡萄糖共转运蛋白2(SGLT2)抑制剂临床合理应用中国专家建议[J]. 中国糖尿病杂志, 2016, 24(10):865-870. |
[1] | 周正新, 梁秋雄, 陈江瑛. 胰高血糖素样肽-1在帕金森病“肠-脑轴”中的作用研究进展[J]. 临床荟萃, 2023, 38(9): 855-858. |
[2] | 陈婷, 刘金彦. 中药靶向PI3K/Akt/mTOR通路调节自噬在糖尿病肾脏病中的研究进展[J]. 临床荟萃, 2023, 38(6): 564-568. |
[3] | 韩拓, 王丽霞, 王怡雯, 李盈, 巩红, 张春艳, 张岩, 李永勤, 王聪霞. 健康人群中膳食营养素摄入与血糖及胰岛素抵抗相关性分析[J]. 临床荟萃, 2023, 38(2): 126-131. |
[4] | 饶小娟, 史双伟, 桑艳红. 德谷门冬双胰岛素与门冬胰岛素持续皮下输注治疗非内分泌科糖尿病患者的短期疗效比较[J]. 临床荟萃, 2023, 38(2): 132-136. |
[5] | 李会芳, 苗霞. 甲状腺激素水平对2型糖尿病肾脏病风险的预测[J]. 临床荟萃, 2023, 38(2): 137-142. |
[6] | 王翠, 林昊, 武萍萍, 张雅丽, 任建, 徐婷, 董国玉, 宰国田. 2型糖尿病患者高同型半胱氨酸血症与早期肾脏疾病的相关性[J]. 临床荟萃, 2023, 38(1): 42-45. |
[7] | 姚瑶, 褚敏. 糖尿病肾病患者认知功能障碍与血清β淀粉样蛋白的关系[J]. 临床荟萃, 2022, 37(9): 813-816. |
[8] | 程霞, 程兰兰, 张鹏伟, 马志刚. 钠-葡萄糖协同转运蛋白2抑制剂肾脏保护作用的研究进展[J]. 临床荟萃, 2022, 37(5): 467-471. |
[9] | 杨静静, 黄帅, 吴倩, 赵丽丽, 蒋影. 胰高血糖素样肽-1受体激动剂治疗肥胖的研究进展[J]. 临床荟萃, 2022, 37(5): 477-480. |
[10] | 杨旻星, 庄姝洁, 韩文娟, 张海云, 叶赟. 低纤维肠内营养素对糖尿病患者肠道准备质量、血糖及舒适度的影响[J]. 临床荟萃, 2022, 37(4): 349-353. |
[11] | 高士欣, 宋冰, 施克新. 血清脂蛋白α、胱抑素-C和尿酸检测对早期糖尿病肾病的诊断价值[J]. 临床荟萃, 2022, 37(3): 248-252. |
[12] | 杜菲, 李英. 老年糖尿病肾病患者肠道菌群失调的研究进展[J]. 临床荟萃, 2022, 37(2): 178-181. |
[13] | 邱建美, 王德峰. 恩格列净治疗2型糖尿病的研究现状[J]. 临床荟萃, 2022, 37(2): 170-173. |
[14] | 贺枫, 牛璐, 雒杲, 杨睿斐, 李凡凡, 成晓琼, 安斌斌, 李京娟, 刘媛媛, 郭茜, 王金羊. 中国人内脏脂肪指数及内脏脂肪面积与糖尿病肾病的相关性及其预警价值[J]. 临床荟萃, 2022, 37(12): 1089-1093. |
[15] | 宋学梅, 曹猛, 项丽君, 王园, 张晓梅. 危重患者的血糖管理[J]. 临床荟萃, 2022, 37(1): 66-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||