临床荟萃 ›› 2024, Vol. 39 ›› Issue (1): 5-11.doi: 10.3969/j.issn.1004-583X.2024.01.001
收稿日期:
2023-01-11
出版日期:
2024-01-20
发布日期:
2024-03-22
通讯作者:
王胜昱,Email: wangshengyu@yeah.net
基金资助:
Peng Yimeng, Yao Yang, Li Siyu, Ding Ge, Sun Yanan, Wang Shengyu()
Received:
2023-01-11
Online:
2024-01-20
Published:
2024-03-22
摘要:
目的 系统评价体外膜肺氧合技术(extracorporeal membrane oxygenation,ECMO)治疗患者血栓发生率。方法 通过“Extracorporeal Membrane Oxygenation或ECMO” 、“thrombus或 complication等关键词检索文献,检索PubMed、EMBASE、万方和中国知网数据库建库至2022年12月有关ECMO及血栓并发症的相关研究,指定2人按照纳排标准对检索的文章进行筛选,应用Review Manager 5.4软件进行meta分析及亚组分析,依据纽卡斯尔-渥太华量表(Newcastle-Ottawa Scale, NOS)评价文章质量。结果 经筛选共纳入16篇文献和1 136例患者,Meta分析结果显示ECMO治疗患者血栓的发生率为52.0%(95%
中图分类号:
彭伊梦, 姚杨, 李思雨, 丁格, 孙亚楠, 王胜昱. 体外膜肺氧合并发血栓发生率的meta分析[J]. 临床荟萃, 2024, 39(1): 5-11.
Peng Yimeng, Yao Yang, Li Siyu, Ding Ge, Sun Yanan, Wang Shengyu. Meta-analysis of the incidence of extracorporeal membrane oxygenation combined with incident thrombosis[J]. Clinical Focus, 2024, 39(1): 5-11.
纳入研究 | 年份 | 国家/地区 | 年龄 (岁) | 男性 [例(%)] | 病例 总数 | 研究类型 | V-V | V-A | VA-V | 持续时间 (d) | 血栓 例数 |
---|---|---|---|---|---|---|---|---|---|---|---|
Parzy[ | 2020 | France | 48.0±16.0 | 71(67.6) | 105 | 回顾性研究 | 105 | 0 | 0 | 10(6,16) | 75 |
Weber[ | 2018 | Germany | 59.1±14.4 | 216(76.9) | 281 | 回顾性研究 | 281 | 0 | 0 | 99(28,75) | 11 |
Cartwright[ | 2021 | Australia | 46.7(41.1, 63.7) | 23(59.0) | 39 | 回顾性研究 | 17 | 22 | 0 | VA:3(2,5); VV:10(6,13) | 26 |
Chandel[ | 2021 | USA | 46(37, 53) | 4(16.7) | 24 | 回顾性研究 | 24 | 0 | 0 | 13(9, 21) | 12 |
Ripoll[ | 2022 | UK | 45(39, 56) | 24(80.0) | 30 | 回顾性研究 | 30 | 0 | 0 | 4(1, 5) | 13 |
Moussa[ | 2021 | France | 55±14 | 183(69.1) | 265 | 回顾性研究 | 265 | 0 | 0 | 7(3,11) | 87 |
Salas De Armas[ | 2022 | USA | 30.6±12.6 | 14(93.3) | 15 | 回顾性研究 | 15 | 0 | 0 | 11.0(7.5,20.0) | 1 |
Kohs[ | 2022 | USA | 51.1±15.9 | 44(65.7) | 67 | 回顾性研究 | 23 | 44 | 0 | 7.0±5.0 | 16 |
Zhang[ | 2021 | China | 47(25,73) | 11(73.3) | 15 | 回顾性研究 | 5 | 10 | 0 | 15.0±18.0 | 4 |
Beyls[ | 2020 | France | 62(56,66) | 10(83.3) | 12 | 回顾性研究 | 12 | 0 | 0 | 4.0(1.5,7.5) | 11 |
Riera[ | 2020 | Spain | 50.5(31.0,64.0) | 16(84.2) | 19 | 回顾性研究 | 19 | 0 | 0 | 8.6(0,17.0) | 9 |
Fong[ | 2021 | Hong Kong | 55.0(41.3,62.0) | 85(65.4) | 130 | 回顾性研究 | 79 | 51 | 0 | 5.9(3.6,7.9) | 37 |
Agerstrand[ | 2016 | New York | 32.6(26.0,39.0) | 0 | 18 | 回顾性研究 | 14 | 1 | 3 | 6.6(6.0,17.8) | 5 |
Trudzinski[ | 2016 | Germany | 46.0±14.4 | 37(58.7) | 63 | 回顾性研究 | 63 | 0 | 0 | 22.4±17.0 | 29 |
Agerstrand[ | 2015 | New York | 33(24,53) | 24(63.2) | 38 | 回顾性研究 | 34 | 2 | 1 | 9.0(7.0,11.5) | 8 |
Roussel[ | 2012 | France | 52(22, 86) | 7(46.7) | 15 | 回顾性研究 | 0 | 15 | 0 | 4.9(1.0,12.0) | 1 |
表1 纳入文献的基本特征
Tab.1 Basic characteristics of included literature
纳入研究 | 年份 | 国家/地区 | 年龄 (岁) | 男性 [例(%)] | 病例 总数 | 研究类型 | V-V | V-A | VA-V | 持续时间 (d) | 血栓 例数 |
---|---|---|---|---|---|---|---|---|---|---|---|
Parzy[ | 2020 | France | 48.0±16.0 | 71(67.6) | 105 | 回顾性研究 | 105 | 0 | 0 | 10(6,16) | 75 |
Weber[ | 2018 | Germany | 59.1±14.4 | 216(76.9) | 281 | 回顾性研究 | 281 | 0 | 0 | 99(28,75) | 11 |
Cartwright[ | 2021 | Australia | 46.7(41.1, 63.7) | 23(59.0) | 39 | 回顾性研究 | 17 | 22 | 0 | VA:3(2,5); VV:10(6,13) | 26 |
Chandel[ | 2021 | USA | 46(37, 53) | 4(16.7) | 24 | 回顾性研究 | 24 | 0 | 0 | 13(9, 21) | 12 |
Ripoll[ | 2022 | UK | 45(39, 56) | 24(80.0) | 30 | 回顾性研究 | 30 | 0 | 0 | 4(1, 5) | 13 |
Moussa[ | 2021 | France | 55±14 | 183(69.1) | 265 | 回顾性研究 | 265 | 0 | 0 | 7(3,11) | 87 |
Salas De Armas[ | 2022 | USA | 30.6±12.6 | 14(93.3) | 15 | 回顾性研究 | 15 | 0 | 0 | 11.0(7.5,20.0) | 1 |
Kohs[ | 2022 | USA | 51.1±15.9 | 44(65.7) | 67 | 回顾性研究 | 23 | 44 | 0 | 7.0±5.0 | 16 |
Zhang[ | 2021 | China | 47(25,73) | 11(73.3) | 15 | 回顾性研究 | 5 | 10 | 0 | 15.0±18.0 | 4 |
Beyls[ | 2020 | France | 62(56,66) | 10(83.3) | 12 | 回顾性研究 | 12 | 0 | 0 | 4.0(1.5,7.5) | 11 |
Riera[ | 2020 | Spain | 50.5(31.0,64.0) | 16(84.2) | 19 | 回顾性研究 | 19 | 0 | 0 | 8.6(0,17.0) | 9 |
Fong[ | 2021 | Hong Kong | 55.0(41.3,62.0) | 85(65.4) | 130 | 回顾性研究 | 79 | 51 | 0 | 5.9(3.6,7.9) | 37 |
Agerstrand[ | 2016 | New York | 32.6(26.0,39.0) | 0 | 18 | 回顾性研究 | 14 | 1 | 3 | 6.6(6.0,17.8) | 5 |
Trudzinski[ | 2016 | Germany | 46.0±14.4 | 37(58.7) | 63 | 回顾性研究 | 63 | 0 | 0 | 22.4±17.0 | 29 |
Agerstrand[ | 2015 | New York | 33(24,53) | 24(63.2) | 38 | 回顾性研究 | 34 | 2 | 1 | 9.0(7.0,11.5) | 8 |
Roussel[ | 2012 | France | 52(22, 86) | 7(46.7) | 15 | 回顾性研究 | 0 | 15 | 0 | 4.9(1.0,12.0) | 1 |
纳入研究 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ | | 总分 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parzy[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 7 |
Weber[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 7 |
Cartwright[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
Chandel[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Ripoll[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 8 |
Moussa[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Salas De Armas[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 9 |
Kohs[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
Zhang[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 8 |
Beyls[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 8 |
Riera[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 8 |
Fong[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 9 |
Agerstrand[ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 |
Trudzinski[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Agerstrand[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Roussel[ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 |
表2 纳入文献的质量评价
Tab.2 Quality evaluation of included literature
纳入研究 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ | | 总分 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parzy[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 7 |
Weber[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 7 |
Cartwright[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
Chandel[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Ripoll[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 8 |
Moussa[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Salas De Armas[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 9 |
Kohs[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
Zhang[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 8 |
Beyls[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 8 |
Riera[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 8 |
Fong[ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 9 |
Agerstrand[ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 |
Trudzinski[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Agerstrand[ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9 |
Roussel[ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 |
亚组 | 纳入研究数 | 异质性检验结果 | 效应模型 | 患病率(95% | |
---|---|---|---|---|---|
总发生率 | 16[ | <0.01 | 91% | 随机 | 52.0%(95% |
年龄(岁) | |||||
<45岁 | 3[ | 0.35 | 5% | 随机 | 27.0%(95% |
45~59岁 | 12[ | <0.01 | 93% | 随机 | 53.0%(95% |
ECMO时间(d) | |||||
≤10 | 8[ | 0.008 | 63% | 随机 | 50.0%(95% |
>10 | 7[ | <0.01 | 95% | 随机 | 39.0%(95% |
BMI( kg/m2) | |||||
24~27.9 | 5[ | <0.01 | 97% | 随机 | 27.0%(95% |
≥28 | 6[ | 0.0009 | 76% | 随机 | 66.0%(95% |
抗凝监测方式 | |||||
APTT | 8[ | <0.01 | 95% | 随机 | 57.0%(95% |
ACT | 3[ | <0.01 | 94% | 随机 | 13.0%(95% |
抗fxa | 2[ | 0.16 | 50% | 随机 | 46.0%(95% |
表3 Meta分析结果汇总表
Tab.3 Summary table of Meta-analysis results
亚组 | 纳入研究数 | 异质性检验结果 | 效应模型 | 患病率(95% | |
---|---|---|---|---|---|
总发生率 | 16[ | <0.01 | 91% | 随机 | 52.0%(95% |
年龄(岁) | |||||
<45岁 | 3[ | 0.35 | 5% | 随机 | 27.0%(95% |
45~59岁 | 12[ | <0.01 | 93% | 随机 | 53.0%(95% |
ECMO时间(d) | |||||
≤10 | 8[ | 0.008 | 63% | 随机 | 50.0%(95% |
>10 | 7[ | <0.01 | 95% | 随机 | 39.0%(95% |
BMI( kg/m2) | |||||
24~27.9 | 5[ | <0.01 | 97% | 随机 | 27.0%(95% |
≥28 | 6[ | 0.0009 | 76% | 随机 | 66.0%(95% |
抗凝监测方式 | |||||
APTT | 8[ | <0.01 | 95% | 随机 | 57.0%(95% |
ACT | 3[ | <0.01 | 94% | 随机 | 13.0%(95% |
抗fxa | 2[ | 0.16 | 50% | 随机 | 46.0%(95% |
剔除研究 | 95% | Tau2 | |||
---|---|---|---|---|---|
Parzy[ | 0.45 | <0.01 | 88% | 0.28~0.75 | 0.74 |
Weber[ | 0.64 | <0.01 | 85% | 0.41~0.99 | 0.54 |
Cartwright[ | 0.47 | <0.01 | 91% | 0.27~0.81 | 0.95 |
Chandel[ | 0.49 | <0.01 | 92% | 0.28~0.87 | 1.01 |
Ripoll[ | 0.50 | <0.01 | 92% | 0.28~0.89 | 1.03 |
Moussa[ | 0.51 | <0.01 | 92% | 0.27~0.98 | 1.36 |
Salas De Armas[ | 0.56 | <0.01 | 92% | 0.32~0.96 | 0.96 |
Kohs[ | 0.53 | <0.01 | 92% | 0.30~0.95 | 1.04 |
Zhang[ | 0.53 | <0.01 | 92% | 0.30~0.92 | 1.00 |
Beyls[ | 0.46 | <0.01 | 91% | 0.27~0.79 | 0.94 |
Riera[ | 0.50 | <0.01 | 92% | 0.28~0.87 | 1.01 |
Fong[ | 0.52 | <0.01 | 92% | 0.29~0.96 | 1.16 |
Agerstrand[ | 0.52 | <0.01 | 92% | 0.32~0.92 | 1.01 |
Trudzinski [ | 0.49 | <0.01 | 92% | 0.28~0.89 | 1.08 |
Agerstrand[ | 0.54 | <0.01 | 92% | 0.31~0.95 | 1.01 |
Roussel[ | 0.56 | <0.01 | 92% | 0.32~0.96 | 0.96 |
表4 ECMO患者血栓发生率的敏感性分析
Tab.4 Sensitivity analysis of thrombosis incidence in ECMO patients
剔除研究 | 95% | Tau2 | |||
---|---|---|---|---|---|
Parzy[ | 0.45 | <0.01 | 88% | 0.28~0.75 | 0.74 |
Weber[ | 0.64 | <0.01 | 85% | 0.41~0.99 | 0.54 |
Cartwright[ | 0.47 | <0.01 | 91% | 0.27~0.81 | 0.95 |
Chandel[ | 0.49 | <0.01 | 92% | 0.28~0.87 | 1.01 |
Ripoll[ | 0.50 | <0.01 | 92% | 0.28~0.89 | 1.03 |
Moussa[ | 0.51 | <0.01 | 92% | 0.27~0.98 | 1.36 |
Salas De Armas[ | 0.56 | <0.01 | 92% | 0.32~0.96 | 0.96 |
Kohs[ | 0.53 | <0.01 | 92% | 0.30~0.95 | 1.04 |
Zhang[ | 0.53 | <0.01 | 92% | 0.30~0.92 | 1.00 |
Beyls[ | 0.46 | <0.01 | 91% | 0.27~0.79 | 0.94 |
Riera[ | 0.50 | <0.01 | 92% | 0.28~0.87 | 1.01 |
Fong[ | 0.52 | <0.01 | 92% | 0.29~0.96 | 1.16 |
Agerstrand[ | 0.52 | <0.01 | 92% | 0.32~0.92 | 1.01 |
Trudzinski [ | 0.49 | <0.01 | 92% | 0.28~0.89 | 1.08 |
Agerstrand[ | 0.54 | <0.01 | 92% | 0.31~0.95 | 1.01 |
Roussel[ | 0.56 | <0.01 | 92% | 0.32~0.96 | 0.96 |
[1] |
Al-Jazairi A, Raslan S, Al-Mehizia R, et al. Performance assessment of a multifaceted unfractionated heparin dosing protocol in adult patients on extracorporeal membrane oxygenator[J]. Ann Pharmacother, 2021, 55(5):592-604.
doi: 10.1177/1060028020960409 pmid: 32959678 |
[2] |
Carter KT, Kutcher ME, Shake JG, et al. Heparin-sparing anticoagulation strategies are viable options for patients on veno-venous ECMO[J]. J Surg Res, 2019, 243:399-409.
doi: S0022-4804(19)30379-8 pmid: 31277018 |
[3] |
Ki K, Passmore MR, Chan CHH, et al. Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit[J]. Intensive Care Med Exp, 2019, 7(1):51.
doi: 10.1186/s40635-019-0264-z pmid: 31432279 |
[4] |
Mihu MR, Mageka D, Swant LV, et al. Veno-arteriovenous extracorporeal membrane oxygenation-A single center experience[J]. Artif Organs, 2021, 45(12):1554-1561.
doi: 10.1111/aor.v45.12 URL |
[5] |
Padhya DR, Prutsky GJ, Nemergut ME, et al. Routine laboratory measures of heparin anticoagulation for children on extracorporeal membrane oxygenation: Systematic review and meta-analysis[J]. Thromb Res, 2019, 179:132-139.
doi: S0049-3848(19)30234-8 pmid: 31132667 |
[6] |
Parzy G, Daviet F, Persico N, et al. Prevalence and risk factors for thrombotic complications following venovenous extracorporeal membrane oxygenation: A CT scan study[J]. Crit Care Med, 2020, 48(2):192-199.
doi: 10.1097/CCM.0000000000004129 pmid: 31939787 |
[7] |
Weber C, Deppe A, Sabashnikov A, et al. Left ventricular thrombus formation in patients undergoing femoral veno-arterial extracorporeal membrane oxygenation[J]. Perfusion, 2018, 33(4):283-288.
doi: 10.1177/0267659117745369 pmid: 29172999 |
[8] |
Cartwright B, Bruce HM, Kershaw G, et al. Hemostasis, coagulation and thrombin in venoarterial and venovenous extracorporeal membrane oxygenation: The HECTIC study[J]. Sci Rep, 2021, 11(1):7975.
doi: 10.1038/s41598-021-87026-z pmid: 33846433 |
[9] |
Chandel A, Patolia S, Looby M, et al. Association of D-dimer and Fibrinogen with hypercoagulability in COVID-19 requiring extracorporeal membrane oxygenation[J]. J Intensive Care Med, 2021, 36(6):689-695.
doi: 10.1177/0885066621997039 URL |
[10] |
Ripoll B, Rubino A, Besser M, et al. Observational study of thrombosis and bleeding in COVID-19 VV ECMO patients[J]. Int J Artif Organs, 2022, 45(2):239-242.
doi: 10.1177/0391398821989065 URL |
[11] |
Moussa MD, Soquet J, Lamer A, et al. Evaluation of anti-activated factor X activity and activated partial thromboplastin time relations and their association with bleeding and thrombosis during Veno-Arterial ECMO support: A retrospective study[J]. J Clin Med, 2021, 10(10):2158.
doi: 10.3390/jcm10102158 URL |
[12] |
Salas De Armas IA, Akkanti B, et al. Traumatic respiratory failure and veno-venous extracorporeal membrane oxygenation support[J]. Perfusion, 2022, 37(5):477-483.
doi: 10.1177/02676591211012840 URL |
[13] |
Kohs TCL, Liu P, Raghunathan V, et al. Severe thrombocytopenia in adults undergoing extracorporeal membrane oxygenation is predictive of thrombosis[J]. Platelets, 2022, 33(4):570-576.
doi: 10.1080/09537104.2021.1961707 URL |
[14] | Zhang Y, Luo M, Wang B, et al. Perioperative,protective use of extracorporeal membrane oxygenation in complex thoracic surgery[J]. Perfusion, 2021, 2676591211011044. |
[15] | Beyls C, Huette P, Abou-Arab O, et al. Extracorporeal membrane oxygenation for COVID-19-associated severe acute respiratory distress syndrome and risk of thrombosis[J]. Br J Anaesth, 2020, 125(2):e260-e262. |
[16] |
Riera J, Argudo E, Martínez-Martínez M, et al. Extracorporeal membrane oxygenation retrieval in coronavirus disease 2019: A case-series of 19 patients supported at a high-volume extracorporeal membrane oxygenation center[J]. Crit Care Explor, 2020, 2(10):e0228.
doi: 10.1097/CCE.0000000000000228 pmid: 33063032 |
[17] |
Fong KM, Au SY, Ng GWY, et al. Bleeding, thrombosis and transfusion in patients on ECMO: A retrospective study in a tertiary center in Hong Kong[J]. Int J Artif Organs, 2021, 44(6):420-425.
doi: 10.1177/0391398820965584 pmid: 33070679 |
[18] |
Agerstrand C, Abrams D, Biscotti M, et al. Extracorporeal membrane oxygenation for cardiopulmonary failure during pregnancy and postpartum[J]. Ann Thorac Surg, 2016, 102(3):774-779.
doi: S0003-4975(16)30092-3 pmid: 27154158 |
[19] |
Trudzinski FC, Minko P, Rapp D, et al. Runtime and aPTT predict venous thrombosis and thromboembolism in patients on extracorporeal membrane oxygenation: A retrospective analysis[J]. Ann Intensive Care, 2016, 6(1):66.
doi: 10.1186/s13613-016-0172-2 pmid: 27432243 |
[20] |
Agerstrand CL, Burkart KM, Abrams DC, et al. Blood conservation in extracorporeal membrane oxygenation for acute respiratory distress syndrome[J]. Ann Thorac Surg, 2015, 99(2):590-595.
doi: 10.1016/j.athoracsur.2014.08.039 pmid: 25499483 |
[21] | Roussel A, Al-Attar N, Alkhoder S, et al. Outcomes of percutaneous femoral cannulation for venoarterial extracorporeal membrane oxygenation support[J]. Eur Heart J Acute Cardiovasc Care, 2012, 1(2):111-114. |
[22] |
Rajan S, Wissenberg M, Folke F, et al. Association of bystander cardiopulmonary resuscitation and survival according to ambulance response times after out-of-hospital cardiac arrest[J]. Circulation, 2016, 134(25):2095-2104.
pmid: 27881566 |
[23] |
McMichael ABV, Zimmerman KO, Kumar KR, et al. Evaluation of effect of scheduled fresh frozen plasma on ECMO circuit life: A randomized pilot trial.[J]. Transfusion, 2021, 61(1):42-51.
doi: 10.1111/trf.16164 pmid: 33269487 |
[24] |
Colman E, Yin EB, Laine G, et al. Evaluation of a heparin monitoring protocol for extracorporeal membrane oxygenation and review of the literature[J]. J Thorac Dis, 2019, 11(8):3325-3335.
doi: 10.21037/jtd.2019.08.44 pmid: 31559035 |
[25] |
Yaw HP, Van Den Helm S, MacLaren G, et al. Platelet phenotype and function in the setting of pediatric extracorporeal membrane oxygenation (ECMO): A systematic review[J]. Front Cardiovasc Med, 2019, 6:137.
doi: 10.3389/fcvm.2019.00137 pmid: 31620448 |
[26] |
Panigada M, E Iapichino G, Brioni M, et al. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: A safety and feasibility pilot study[J]. Ann Intensive Care, 2018, 8(1):7.
doi: 10.1186/s13613-017-0352-8 pmid: 29340875 |
[27] | Qiu C, Li T, Wei G, et al. Hemorrhage and venous thromboembolism in critically ill patients with COVID-19[J]. SAGE Open Med, 2021, 9:20503121211020167. |
[28] |
Glorion M, Mercier O, Mitilian D, et al. Central versus peripheral cannulation of extracorporeal membrane oxygenation support during double lung transplant for pulmonary hypertension[J]. Eur J Cardiothorac Surg, 2018, 54(2):341-347.
doi: 10.1093/ejcts/ezy089 pmid: 29528384 |
[1] | 李雯琳, 张志. 心房颤动患者左心耳形态结构和功能与左心耳血栓及心源性卒中的关系研究进展[J]. 临床荟萃, 2024, 39(2): 168-171. |
[2] | 马丽娜, 焦焕利, 曹振华. 慢性非缺血性心功能衰竭合并血栓栓塞及药物治疗研究进展[J]. 临床荟萃, 2024, 39(1): 75-79. |
[3] | 冷婉铜, 陶洁. 多发性骨髓瘤患者治疗后发生静脉血栓栓塞的危险因素[J]. 临床荟萃, 2023, 38(4): 340-345. |
[4] | 周慧贤, 周亚青, 郭甘霖, 崔炜. 左心室血栓治疗的系统回顾及meta分析[J]. 临床荟萃, 2023, 38(2): 101-110. |
[5] | 刘向东, 蔡延东, 秦延军, 李云松, 李亮, 高瑞姣, 任磊, 张彦荣. 运动性横纹肌溶解症并发急性肾功能不全及透析管相关性血栓1例并文献复习[J]. 临床荟萃, 2022, 37(9): 831-833. |
[6] | 常雅君, 郭卫娜, 郭巧珍, 王天俊. 以孤立性头痛为主要表现的颅内静脉窦血栓1例并文献复习[J]. 临床荟萃, 2022, 37(3): 271-274. |
[7] | 王娇燕, 章迎春, 任珂明, 马国峰, 应可净. 奥氮平使用合并静脉血栓栓塞症16例临床分析[J]. 临床荟萃, 2022, 37(12): 1108-1113. |
[8] | 沈瑞, 雷艳花, 贾昊鹍. 145例弥漫性大B细胞淋巴瘤患者静脉血栓栓塞发生率及危险因素分析[J]. 临床荟萃, 2022, 37(1): 43-45. |
[9] | 崔璐, 李静, 刘宇宏. 原发性干燥综合征并发肺栓塞1例并文献复习[J]. 临床荟萃, 2021, 36(4): 361-364. |
[10] | 狄鼎新, 张铮, 李叶桐, 邹古明, 高红梅, 李文歌. 合并恶性高血压和血栓性微血管病的青年IgA肾病患者治疗及预后[J]. 临床荟萃, 2021, 36(3): 256-261. |
[11] | 张小乐, 蔡肇栩, 张贺琼, 王洋洋, 陆少云, 杨春万. 血栓弹力图在初发急性心肌梗死患者中的临床应用[J]. 临床荟萃, 2021, 36(2): 125-128. |
[12] | 尹园园, 任慧玲. 脑静脉窦血栓形成作为首发的神经白塞病1例报告并文献复习[J]. 临床荟萃, 2021, 36(2): 162-167. |
[13] | 尹园园, 任慧玲. 血栓性抗磷脂综合征7例回顾性分析[J]. 临床荟萃, 2021, 36(12): 1123-1127. |
[14] | 谢长清,王海芳,徐岚,蔡建政,张滢滢,喻伟霞. Caprini 2005风险评估模型在脑卒中急性期患者中的应用价值评价[J]. 临床荟萃, 2020, 35(9): 796-800. |
[15] | 姚美芬,徐建华. rt-PA治疗急性轻型缺血性脑卒中的疗效分析[J]. 临床荟萃, 2020, 35(8): 702-706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||