临床荟萃 ›› 2024, Vol. 39 ›› Issue (3): 274-278.doi: 10.3969/j.issn.1004-583X.2024.03.014
收稿日期:
2023-10-16
出版日期:
2024-03-20
发布日期:
2024-06-12
通讯作者:
苏永峰
E-mail:13947212735@163.com
基金资助:
Received:
2023-10-16
Online:
2024-03-20
Published:
2024-06-12
摘要:
2型糖尿病(type 2 diabetes mellitus,T2DM)是一种以胰岛素抵抗和(或)胰岛素生成不足为特点的代谢性疾病。常易合并肾病、心血管疾病、视网膜病变、肢端溃疡、精神障碍(抑郁、焦虑)等并发症。T2DM的治疗依然面临许多困难,迫切需要更为有效的干预措施。近年来肠道菌群因其复杂多样、功能繁多备受学者关注。研究发现肠道菌群与T2DM关系密切,调节肠道菌群可在一定程度上改善T2DM患者的临床症状,然而其具体机制仍然未完全阐明。本文根据近年来国内外相关研究以总结肠道菌群在T2DM中的研究进展,为进一步研究提供依据。
中图分类号:
王淑亮, 苏永峰. 肠道菌群在2型糖尿病中的研究进展[J]. 临床荟萃, 2024, 39(3): 274-278.
[1] | 吕若琦. 最新版“全球糖尿病地图”里的中国景象[J]. 江苏卫生保健, 2020, 265(2): 56. |
[2] | 杨燕, 王德峰. 肠道菌群在糖尿病治疗中的研究进展[J]. 临床荟萃, 2022, 37(10): 953-956. |
[3] |
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.
doi: S0168-8278(19)30604-X pmid: 31622696 |
[4] |
Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus[J]. Gut Microbes, 2020, 11(3): 253-264.
doi: 10.1080/19490976.2020.1717719 pmid: 32005089 |
[5] | Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism, 2021,117: 154712. |
[6] | Zhao X, Hu X, Han J, et al. Gut mycobiome: A “black box” of gut microbiome-host interactions[J]. WIREs Mech Dis, 2023, 15(5): e1611. |
[7] |
Thursby E, Juge N. Introduction to the human gut microbiota[J]. Biochem J, 2017, 474(11): 1823-1836.
doi: 10.1042/BCJ20160510 pmid: 28512250 |
[8] |
Álvarez J, Fernández Real JM, Guarner F, et al. Gut microbes and health[J]. Gastroenterol Hepatol, 2021, 44(7): 519-535.
doi: 10.1016/j.gastrohep.2021.01.009 pmid: 33652061 |
[9] | Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology[J]. EBioMedicine, 2020,51: 102590. |
[10] | He L, Yang FQ, Tang P, et al. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus[J]. Biomed Pharmacother, 2022,151: 113091. |
[11] | Alvarez-Vieites E, López-Santamarina A, Miranda JM, et al. Influence of the intestinal microbiota on diabetes management[J]. Curr Pharm Biotechnol, 2020, 21(15): 1603-1615. |
[12] |
Liu WL, Tran T, Rhee CM, et al. Diabetes and the gut microbiome[J]. Semin Nephrol, 2021, 41(2): 104-113.
doi: 10.1016/j.semnephrol.2021.03.005 pmid: 34140089 |
[13] | Al-Ishaq RK, Samuel SM, Büsselberg D. The influence of gut microbial species on diabetes mellitus[J]. Int J Mol Sci, 2023, 24(9): 8118. |
[14] | Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective[J]. Life Sci, 2023, 316: 121414. |
[15] | Snelson M, Rampanelli E, Nieuwdorp M, et al. Microbial influencers: Treating diabetes through the gut[J]. Immunol Cell Biol, 2022, 100(6): 390-393. |
[16] | Yu HJ, Jing C, Xiao N, et al. Structural difference analysis of adult's intestinal flora basing on the 16S rDNA gene sequencing technology[J]. Eur Rev Med Pharmacol Sci, 2020, 24(24): 12983-12992. |
[17] | Panek M, ˇCipˇci'c Paljetak H, Bareši'c A, et al. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies[J]. Sci Rep, 2018, 8(1): 5143. |
[18] | Song Z, Yan A, Guo Z, et al. Targeting metabolic pathways: A novel therapeutic direction for type 2 diabetes[J]. Front Cell Infect Microbiol, 2023, 13: 1218326. |
[19] | Anachad O, Taouil A, Taha W, et al. The implication of short-chain fatty acids in obesity and diabetes[J]. Microbiol Insights, 2023, 16: 11786361231162720. |
[20] | 党崇舒, 赵可新, 李华文, 等. 肠道短链脂肪酸与2型糖尿病相关性研究进展[J]. 中国微生态学杂志, 2021, 33(12): 1471-1475. |
[21] | Wu Y, Zhou A, Tang L, et al. Bile acids: Key regulators and novel treatment targets for type 2 diabetes[J]. J Diabetes Res, 2020, 2020: 6138438. |
[22] | Gomaa EZ. Human gut microbiota/microbiome in health and diseases: A review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. |
[23] |
De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1-2): 84-96.
doi: 10.1016/j.cell.2013.12.016 pmid: 24412651 |
[24] | Zhang L, Chu J, Hao W, et al. Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications[J]. Mediators Inflamm, 2021, 2021: 5110276. |
[25] | Zheng Y, Ding Q, Wei Y, et al. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis[J]. Phytomedicine, 2021, 88: 153455. |
[26] |
Camargo A, Jimenez-Lucena R, Alcala-Diaz JF, et al. Postprandial endotoxemia may influence the development of type 2 diabetes mellitus: From the CORDIOPREV study[J]. Clin Nutr, 2019, 38(2): 529-538.
doi: S0261-5614(18)30128-6 pmid: 29685478 |
[27] | Wasiak J, Gawlik-Kotelnicka O. Intestinal permeability and its significance in psychiatric disorders- A narrative review and future perspectives[J]. Behav Brain Res, 2023, 448: 114459. |
[28] | Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: A systematic review[J]. Metabolism, 2017, 68: 133-144. |
[29] | Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes[J]. Am J Physiol Endocrinol Metab, 2007, 292(3): E740-7. |
[30] |
谭钦文, 杜沅沁, 黄鸿娜, 等. 肠道微生态/胆汁酸代谢/FXR途径在NAFLD发展进程中的作用机制[J]. 中西医结合肝病杂志, 2023, 33(5): 467-470.
doi: 10.3969/j.issn.1005-0264.2023.005.023 |
[31] | Gao R, Meng X, Xue Y, et al. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus[J]. Front Pharmacol, 2022, 13: 1027212. |
[32] | Tu J, Wang Y, Jin L, et al. Bile acids, gut microbiota and metabolic surgery[J]. Front Endocrinol (Lausanne), 2022, 13: 929530. |
[33] |
Cipriani S, Mencarelli A, Palladino G, et al. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats[J]. J Lipid Res, 2010, 51(4): 771-784.
doi: 10.1194/jlr.M001602 pmid: 19783811 |
[34] | Shapiro H, Kolodziejczyk AA, Halstuch D, et al. Bile acids in glucose metabolism in health and disease[J]. J Exp Med, 2018, 215(2): 383-396. |
[35] |
Xie C, Jiang C, Shi J, et al. An Intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice[J]. Diabetes, 2017, 66(3): 613-626.
doi: 10.2337/db16-0663 pmid: 28223344 |
[36] | Xiao H, Sun X, Liu R, et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy[J]. Pharmacol Res, 2020, 151: 104559. |
[37] | Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects[J]. Nat Chem Biol, 2021, 17(1): 20-29. |
[38] |
Kuhre RE, Holst JJ, Kappe C. The regulation of function, growth and survival of GLP-1-producing L-cells[J]. Clin Sci (Lond), 2016, 130(2): 79-91.
doi: 10.1042/CS20150154 pmid: 26637406 |
[39] |
Somm E, Jornayvaz FR. Fibroblast growth factor 15/19: From basic functions to therapeutic perspectives[J]. Endocr Rev, 2018, 39(6): 960-989.
doi: 10.1210/er.2018-00134 pmid: 30124818 |
[40] |
Flippo KH, Potthoff MJ. Metabolic messengers: FGF21[J]. Nat Metab, 2021, 3(3): 309-317.
doi: 10.1038/s42255-021-00354-2 pmid: 33758421 |
[41] |
Fu L, Qiu Y, Shen L, et al. The delayed effects of antibiotics in type 2 diabetes, friend or foe?[J]. J Endocrinol, 2018, 238(2): 137-149.
doi: 10.1530/JOE-17-0709 pmid: 29929986 |
[42] |
Antushevich H. Fecal microbiota transplantation in disease therapy[J]. Clin Chim Acta, 2020, 503: 90-98.
doi: S0009-8981(19)32179-5 pmid: 31968211 |
[43] |
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J]. Gastroenterology, 2012, 143(4): 913-916. e7.
doi: 10.1053/j.gastro.2012.06.031 pmid: 22728514 |
[44] |
Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition[J]. Cell Metab, 2017, 26(4): 611-619. e6.
doi: S1550-4131(17)30559-4 pmid: 28978426 |
[45] | Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: Review and update[J]. J Formos Med Assoc, 2019, 118(Suppl 1): S23-S31. |
[46] |
de Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time[J]. Gut, 2020, 69(3): 502-512.
doi: 10.1136/gutjnl-2019-318320 pmid: 31147381 |
[47] |
McRae MP. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses[J]. J Chiropr Med, 2018, 17(1): 44-53.
doi: 10.1016/j.jcm.2017.11.002 pmid: 29628808 |
[48] | Wang Y, Fan M, Qian H, et al. Whole grains-derived functional ingredients against hyperglycemia: Targeting hepatic glucose metabolism[J]. Crit Rev Food Sci Nutr, 2023, 1-22. |
[49] | Fallucca F, Porrata C, Fallucca S, et al. Influence of diet on gut microbiota, inflammation and type 2 diabetes mellitus. First experience with macrobiotic Ma-Pi 2 diet[J]. Diabetes Metab Res Rev, 2014, 30(Suppl 1): 48-54. |
[50] |
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156.
doi: 10.1126/science.aao5774 pmid: 29590046 |
[51] |
Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella[J]. Cell Metab, 2015, 22(6): 971-982.
doi: 10.1016/j.cmet.2015.10.001 pmid: 26552345 |
[52] | Kerry RG, Patra JK, Gouda S, et al. Benefaction of probiotics for human health: A review[J]. J Food Drug Anal, 2018, 26(3): 927-939. |
[53] | Tao YW, Gu YL, Mao XQ, et al. Effects of probiotics on type II diabetes mellitus: A meta-analysis[J]. J Transl Med, 2020, 18(1): 30. |
[54] |
Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, et al. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: A meta-analysis of randomized trials[J]. Daru, 2019, 27(2): 827-837.
doi: 10.1007/s40199-019-00302-2 pmid: 31691101 |
[55] |
Cheng D, Xie MZ. A review of a potential and promising probiotic candidate-Akkermansia muciniphila[J]. J Appl Microbiol, 2021, 130(6): 1813-1822.
doi: 10.1111/jam.14911 pmid: 33113228 |
[56] | Zhai Q, Feng S, Arjan N, et al. A next generation probiotic, Akkermansia muciniphila[J]. Crit Rev Food Sci Nutr, 2019, 59(19): 3227-3236. |
[57] | Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436. |
[58] |
Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse[J]. Diabetologia, 2012, 55(8): 2285-2294.
doi: 10.1007/s00125-012-2564-7 pmid: 22572803 |
[59] |
Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nat Med, 2019, 25(7): 1096-1103.
doi: 10.1038/s41591-019-0495-2 pmid: 31263284 |
[60] |
Wu H, Tremaroli V, Schmidt C, et al. The gut microbiota in prediabetes and diabetes: A population-based cross-sectional study[J]. Cell Metab, 2020, 32(3): 379-390. e3.
doi: S1550-4131(20)30312-0 pmid: 32652044 |
[61] |
Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression[J]. J Diabetes, 2020, 12(3): 224-236.
doi: 10.1111/1753-0407.12986 pmid: 31503404 |
[62] | Agarwal P, Khatri P, Billack B, et al. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis[J]. Pharm Res, 2014, 31(12): 3404-3414. |
[63] | Pasieka AM, Riddell MC. Advances in exercise, physical activity, and diabetes mellitus[J]. Diabetes Technol Ther, 2018, 20(S1): S104-S113. |
[64] |
Jenkins DW, Jenks A. Exercise and diabetes: A narrative review[J]. J Foot Ankle Surg, 2017, 56(5): 968-974.
doi: S1067-2516(17)30418-0 pmid: 28842107 |
[65] | Clarke SF, Murphy EF, O'Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversit[J]. Gut, 2014, 63(12): 1913-1920. |
[66] | Cunningham AL, Stephens JW, Harris DA. Gut microbiota influence in type 2 diabetes mellitus (T2DM)[J]. Gut Pathog, 2021, 13(1): 50. |
[67] | Liu W, Luo Z, Zhou J, et al. Gut microbiota and antidiabetic drugs: Perspectives of personalized treatment in type 2 diabetes mellitus[J]. Front Cell Infect Microbiol, 2022, 12: 853771. |
[1] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[2] | 金鑫, 吴金玲, 尹丽丽. 持续性植物状态促醒机制及治疗研究进展[J]. 临床荟萃, 2024, 39(2): 172-176. |
[3] | 王海婷, 张丽平, 武雪瑞, 包利红, 李维燕, 闫进琳, 宋淑华, 卢珊珊. 远程康复在脊髓损伤患者居家康复护理中的研究进展[J]. 临床荟萃, 2023, 38(9): 851-854. |
[4] | 杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
[5] | 郭晓翠, 赖碧红. 慢性肾功能衰竭患者血液透析后生活质量的研究进展[J]. 临床荟萃, 2023, 38(11): 1038-1041. |
[6] | 白碧玥, 彭艳, 朱晓峰, 尹昌浩. 缺血性脑卒中影响侧支循环建立因素的研究进展[J]. 临床荟萃, 2023, 38(11): 1034-1037. |
[7] | 王晶霞, 汤灵玲. 肠道微生物群疗法防治复发性艰难梭菌感染研究进展[J]. 临床荟萃, 2022, 37(8): 759-763. |
[8] | 杜菲, 李英. 老年糖尿病肾病患者肠道菌群失调的研究进展[J]. 临床荟萃, 2022, 37(2): 178-181. |
[9] | 杨燕, 王德峰. 肠道菌群在糖尿病治疗中的研究进展[J]. 临床荟萃, 2022, 37(10): 953-956. |
[10] | 王战建;肖艳新;GAO Ya-li. 从ACCORD研究中再认识2型糖尿病强化降糖治疗——ACCORD研究介绍[J]. 临床荟萃, 2009, 24(1): 3-4. |
[11] | 刘鹏;周卓宁;钟润芬;杨望荣. 踝臂指数与老年2型糖尿病缺血性脑卒中的危险因素分析[J]. 临床荟萃, 2008, 23(12): 889-890. |
[12] | 田利民;高翠霞;许衍甲;刘静. 2型糖尿病患者瘦素与性激素的关系[J]. 临床荟萃, 2007, 22(6): 406-407. |
[13] | 赵志刚;刘靖;侯永利. 罗格列酮对2型糖尿病尿微量白蛋白的影响[J]. 临床荟萃, 2007, 22(14): 1037-1038. |
[14] | 张雅中;房辉;裴玉梅;田金莉;张禾伟;吴卫平;许静. 两种胰岛素强化治疗方案对初诊2型糖尿病患者胰腺β细胞功能的影响[J]. 临床荟萃, 2005, 20(10): 551-554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||