临床荟萃 ›› 2022, Vol. 37 ›› Issue (12): 1132-1136.doi: 10.3969/j.issn.1004-583X.2022.12.013
收稿日期:
2022-09-06
出版日期:
2022-12-20
发布日期:
2023-01-18
通讯作者:
邓琦
E-mail:kachydeng@hotmail.com
基金资助:
Received:
2022-09-06
Online:
2022-12-20
Published:
2023-01-18
摘要:
嵌合抗原受体(chimeric antigen receptor,CAR)技术介导的嵌合抗原受体T细胞(chimeric antigen receptor T-cell, CAR-T)疗法虽然已在急性B淋巴细胞白血病的临床治疗上取得了显著的效果,但是在实体瘤治疗中却进展缓慢。相比T细胞,巨噬细胞在实体瘤微环境中不仅具有较强的渗透性,而且具有促进抗原提呈和增强T细胞杀伤活性的作用,因此CAR巨噬细胞(CAR-M)在实体瘤的治疗中具有重要的应用前景。本文通过对CAR-M的细胞来源,CAR-M载体的构建和传递及CAR-M的临床研究进行综述,旨在为CAR-M的临床转化应用提供参考和依据。
中图分类号:
吕翠翠, 沈俊, 邓琦. 嵌合抗原受体巨噬细胞的研究进展[J]. 临床荟萃, 2022, 37(12): 1132-1136.
类别 | CAR-T | CAR-NK | CAR-M | hPSC-CAR-M |
---|---|---|---|---|
细胞来源 | 外周血(自体) | 外周血或脐带血 | 外周血 | 不受限制 |
便捷性 | 可冻存,现用现做 | 不可冻存,现用现做 | 不可冻存,现用现做 | 可冻存,及时使用 |
异质性 | 异质性 | 异质性 | 异质性 | 同质性 |
基因编辑 | 容易,随机 | 困难,随机 | 困难,随机 | 容易,均一100% |
CRS | 高 | 低 | 中 | 中 |
GVHD | 高 | 低 | 低 | 低 |
细胞库 | 否 | 否 | 否 | 是 |
实体瘤效应 | 低 | 低 | 高 | 高 |
抗感染 | 无 | 无 | 高 | 高 |
表1 不同CAR免疫细胞比较
类别 | CAR-T | CAR-NK | CAR-M | hPSC-CAR-M |
---|---|---|---|---|
细胞来源 | 外周血(自体) | 外周血或脐带血 | 外周血 | 不受限制 |
便捷性 | 可冻存,现用现做 | 不可冻存,现用现做 | 不可冻存,现用现做 | 可冻存,及时使用 |
异质性 | 异质性 | 异质性 | 异质性 | 同质性 |
基因编辑 | 容易,随机 | 困难,随机 | 困难,随机 | 容易,均一100% |
CRS | 高 | 低 | 中 | 中 |
GVHD | 高 | 低 | 低 | 低 |
细胞库 | 否 | 否 | 否 | 是 |
实体瘤效应 | 低 | 低 | 高 | 高 |
抗感染 | 无 | 无 | 高 | 高 |
[1] |
Lyu C, Cui R, Wang J, et al. Intensive debulking chemotherapy improves the short-term and long-term efficacy of anti-CD19-CAR-T in refractory/relapsed DLBCL with high tumor bulk[J]. Front Oncol, 2021, 11:706087.
doi: 10.3389/fonc.2021.706087 URL |
[2] |
Zhu H, Deng H, Mu J, et al. Anti-CD22 CAR-T cell therapy as a salvage treatment in B cell malignancies refractory or relapsed after anti-CD19 CAR-T therapy[J]. Onco Targets Ther, 2021, 14:4023-4037.
doi: 10.2147/OTT.S312904 URL |
[3] |
Cui R, Lyu C, Li Q, et al. Humanized anti-CD19 chimeric antigen receptor-T cell therapy is safe and effective in lymphoma and leukemia patients with chronic and resolved hepatitis B virus infection[J]. Hematol Oncol, 2021, 39(1):75-86.
doi: 10.1002/hon.2807 URL |
[4] |
Frey NV, Shaw PA, Hexner EO, et al. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia[J]. J Clin Oncol, 2020, 38(5):415-422.
doi: 10.1200/JCO.19.01892 pmid: 31815579 |
[5] | 李青, 邓琦. 嵌合抗原受体T细胞治疗复发难治弥漫大B细胞淋巴瘤进展[J]. 临床荟萃, 2022, 37(2):182-187. |
[6] |
Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449):162-168.
doi: 10.1126/science.aav8692 pmid: 31296767 |
[7] |
Parihar R, Rivas C, Huynh M, et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors[J]. Cancer Immunol Res, 2019, 7(3):363-375.
doi: 10.1158/2326-6066.CIR-18-0572 pmid: 30651290 |
[8] |
Greco B, Malacarne V, De Girardi F, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies[J]. Sci Transl Med, 2022, 14(628):eabg3072.
doi: 10.1126/scitranslmed.abg3072 URL |
[9] |
Sun L, Kees T, Almeida AS, et al. Activating a collaborative innate-adaptive immune response to control metastasis[J]. Cancer Cell, 2021, 39(10):1361-1374.e9.
doi: 10.1016/j.ccell.2021.08.005 pmid: 34478639 |
[10] |
Raines LN, Zhao H, Wang Y, et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages[J]. Nat Immunol, 2022, 23(3):431-445.
doi: 10.1038/s41590-022-01145-x pmid: 35228694 |
[11] |
Travers M, Brown SM, Dunworth M, et al. DFMO and 5-azacytidine increase M1 macrophages in the tumor microenvironment of murine ovarian cancer[J]. Cancer Res, 2019, 79(13):3445-3454.
doi: 10.1158/0008-5472.CAN-18-4018 pmid: 31088836 |
[12] |
Zhang L, Tian L, Dai X, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions[J]. J Hematol Oncol, 2020, 13(1):153.
doi: 10.1186/s13045-020-00983-2 URL |
[13] |
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38(8):947-953.
doi: 10.1038/s41587-020-0462-y pmid: 32361713 |
[14] |
Zhang W, Liu L, Su H, et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix[J]. Br J Cancer, 2019, 121(10):837-845.
doi: 10.1038/s41416-019-0578-3 URL |
[15] | Schildberger A, Rossmanith E, Eichhorn T, et al. Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide[J]. Mediators Inflamm, 2013, 2013:697972. |
[16] |
Shen J, Xu Y, Zhang S, et al. Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs[J]. Sci Adv, 2021, 7(36):eabi9787.
doi: 10.1126/sciadv.abi9787 URL |
[17] |
Pouyanfard S, Meshgin N, Cruz LS, et al. Human induced pluripotent stem cell-derived macrophages ameliorate liver fibrosis[J]. Stem Cells, 2021, 39(12):1701-1717.
doi: 10.1002/stem.3449 pmid: 34460131 |
[18] | Zhang S, Qu K, Lyu S, et al. PEAR1 is a potential regulator of early hematopoiesis of human pluripotent stem cells[J]. J Cell Physiol, 2022. |
[19] |
Gutbier S, Wanke F, Dahm N, et al. Large-scale production of human iPSC-derived macrophages for drug screening[J]. Int J Mol Sci, 2020, 21(13): 4808.
doi: 10.3390/ijms21134808 URL |
[20] |
Yanagimachi MD, Niwa A, Tanaka T, et al. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum-and feeder cell-free conditions[J]. PLoS One, 2013, 8(4):e59243.
doi: 10.1371/journal.pone.0059243 URL |
[21] |
Bu JY, Shaw AS, Chan AC. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance[J]. Proc Natl Acad Sci U S A, 1995, 92(11):5106-5110.
doi: 10.1073/pnas.92.11.5106 URL |
[22] |
Morrissey MA, Williamson AP, Steinbach AM, et al. Chimeric antigen receptors that trigger phagocytosis[J]. Elife, 2018, 7:e36688.
doi: 10.7554/eLife.36688 URL |
[23] |
Niu Z, Chen G, Chang W, et al. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity[J]. J Pathol, 2021, 253(3):247-257.
doi: 10.1002/path.5585 URL |
[24] |
Xu Y, Liu Q, Zhong M, et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies[J]. J Hematol Oncol, 2019, 12(1):49.
doi: 10.1186/s13045-019-0732-7 URL |
[25] |
Gu R, Liu F, Zou D, et al. Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia[J]. J Hematol Oncol, 2020, 13(1):122.
doi: 10.1186/s13045-020-00953-8 URL |
[26] | Chen Z, Liu Y, Chen N, et al. Loop CD20/CD19 CAR-T cells eradicate B-cell malignancies efficiently[J]. Sci China Life Sci, 2022. |
[27] |
Chen N, Xu Y, Mou J, et al. Targeting of IL-10R on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells[J]. Blood Cancer J, 2021, 11(8):144.
doi: 10.1038/s41408-021-00536-x pmid: 34392305 |
[28] |
Schlam D, Bagshaw RD, Freeman SA, et al. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins[J]. Nat Commun, 2015, 6:8623.
doi: 10.1038/ncomms9623 pmid: 26465210 |
[29] |
Bartok E, Hartmann G. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids[J]. Immunity, 2020, 53(1):54-77.
doi: S1074-7613(20)30269-7 pmid: 32668228 |
[30] |
Bobadilla S, Sunseri N, Landau NR. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein[J]. Gene Ther, 2013, 20(5):514-520.
doi: 10.1038/gt.2012.61 pmid: 22895508 |
[31] |
Cha EB, Shin KK, Seo J, et al. Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis[J]. BMB Rep, 2020, 53(8):442-447.
pmid: 32438971 |
[32] |
Moradian H, Roch T, Lendlein A, et al. mRNA transfection-induced activation of primary human monocytes and macrophages: dependence on carrier system and nucleotide modification[J]. Sci Rep, 2020, 10(1):4181.
doi: 10.1038/s41598-020-60506-4 pmid: 32144280 |
[33] |
Wang X, Wang G, Wang N, et al. A simple and efficient method for the generation of a porcine alveolar macrophage cell line for high-efficiency porcine reproductive and respiratory syndrome virus 2 infection[J]. J Virol Methods, 2019, 274:113727.
doi: 10.1016/j.jviromet.2019.113727 URL |
[34] | Kang M, Lee SH, Kwon M, et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy[J]. Adv Mater, 2021, 33(43):e2103258. |
[35] | Chen C, Jing W, Chen Y, et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy[J]. Sci Transl Med, 2022, 14(656): eabn1128. |
[36] |
Burger M, Thiounn N, Denzinger S, et al. The application of adjuvant autologous antravesical macrophage cell therapy vs. BCG in non-muscle invasive bladder cancer: a multicenter, randomized trial[J]. J Transl Med, 2010, 8:54.
doi: 10.1186/1479-5876-8-54 pmid: 20529333 |
[1] | 陈瑾, 吕鸿雁, 刘晗, 刘建宁, 卢佳配, 张金巧. 靶向BCMA的嵌合抗原受体T细胞治疗三重难治性多发性骨髓瘤的研究进展[J]. 临床荟萃, 2023, 38(7): 654-658. |
[2] | 李青, 邓琦. 嵌合抗原受体T细胞治疗复发难治弥漫大B细胞淋巴瘤进展[J]. 临床荟萃, 2022, 37(2): 182-187. |
[3] | 吕翠翠, 李新,李青,穆娟,王嘉,袁婷,江嫣雨,邓琦. 酪氨酸激酶抑制剂对CD19 CAR-T细胞在难治/复发Ph阳性急性淋巴细胞白血病中扩增的影响[J]. 临床荟萃, 2020, 35(10): 909-913. |
[4] | 赵宁1,梁文章1,侯彦2,马翠卿1. 肺泡巨噬细胞在肺癌中的研究现状[J]. 临床荟萃, 2019, 34(4): 377-384. |
[5] | 郑志鹏;宋宁;侯迎秋;段林;吴建玲;张瑞芳;贺文舒. 咯利普兰对佐剂关节炎大鼠腹腔巨噬细胞体外释放炎性细胞因子的影响[J]. 临床荟萃, 2013, 28(8): 880-883. |
[6] | 董静杰;李拥军;王梅. 肥胖与脂肪细胞因子[J]. 临床荟萃, 2013, 28(2): 234-236. |
[7] | 陈玉;聂秀红. 肺泡蛋白沉积症发病机制的研究进展[J]. 临床荟萃, 2012, 27(13): 1187-1189. |
[8] | 欧阳迎春;罗兴林;邹杰. 血清C反应蛋白、巨噬细胞集落刺激因子与心绞痛患者冠状动脉狭窄程度的相关性研究[J]. 临床荟萃, 2008, 23(16): 1164-1165. |
[9] | 吕翠环;马玉腾;徐明堂;孙红梅;李欣;袁淑平. 肺结核患者肺组织中巨噬细胞和自然杀伤细胞的数量及分布研究[J]. 临床荟萃, 2007, 22(16): 1148-1150. |
[10] | 杜宇;潘文森;郭丽萍;王保法. 粒细胞-巨噬细胞集落刺激因子治疗肺泡蛋白沉积症1例[J]. 临床荟萃, 2005, 20(6): 348-349. |
[11] | 于海初;孙桂霞;郭鹏菊;张文燕;蔡尚郎;孙璐. 急性冠状动脉综合征患者巨噬细胞集落刺激因子的检测及其临床意义[J]. 临床荟萃, 2004, 19(9): 481-483. |
[12] | 石晓建;李军华;刘群;刘黎;张俊玲. 糖尿病合并肺结核患者肺泡巨噬细胞人类组织相容性Ⅱ类抗原信使核糖核酸的表达[J]. 临床荟萃, 2004, 19(4): 193-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||