临床荟萃 ›› 2022, Vol. 37 ›› Issue (9): 846-854.doi: 10.3969/j.issn.1004-583X.2022.09.017
收稿日期:
2022-07-23
出版日期:
2022-09-20
发布日期:
2022-11-21
通讯作者:
叶桦
E-mail:yh-med@163.com
基金资助:
Received:
2022-07-23
Online:
2022-09-20
Published:
2022-11-21
摘要:
非酒精性脂肪性肝病 (non-alcoholic fatty liver disease, NAFLD) 是一种发病机制复杂,以肝细胞显著脂肪变为病理特征的慢性代谢性疾病,已成为我国慢性肝病的主要病因。NAFLD可进一步发展至非酒精性脂肪性肝炎、肝纤维化甚至肝细胞癌。肝脏除了代谢解毒功能外,还可以看作一个免疫器官,其中存在复杂的先天免疫信号网络,而先天免疫反应会导致肝脏脂肪变性,进一步调控NAFLD发生发展过程中的代谢反应、炎症及纤维化反应。此外,细胞因子能够通过诱发并参与免疫反应,激发肝脏细胞内的信号通路,在肝脏炎症反应中起着重要作用。目前NAFLD的治疗方法有限,尚未有药物广泛普及于临床应用,而免疫相关性西医药及中医药的治疗药物还在不断研究中。因此,本文总结了先天免疫细胞、先天免疫相关信号通路及免疫相关性中西医治疗与NAFLD关系的研究进展,为预防和治疗NAFLD提供理论依据。
中图分类号:
王馨雪, 赵丹, 柳惠未, 叶桦, 徐梦丹. 先天免疫反应与非酒精性脂肪性肝病关系的研究进展[J]. 临床荟萃, 2022, 37(9): 846-854.
[1] |
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048.
doi: 10.1016/j.metabol.2015.12.012 URL |
[2] |
Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution[J]. Nature, 2020, 582(7813): 571-576.
doi: 10.1038/s41586-020-2316-7 URL |
[3] |
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH[J]. J Hepatol, 2018, 68(2): 238-250.
doi: S0168-8278(17)32435-2 pmid: 29154966 |
[4] |
Tosello-Trampont AC, Landes SG, Nguyen V, et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production[J]. J Biol Chem, 2012, 287(48): 40161-40172.
doi: 10.1074/jbc.M112.417014 pmid: 23066023 |
[5] |
Tacke F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312.
doi: S0168-8278(17)30125-3 pmid: 28267621 |
[6] |
Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance[J]. Diabetes, 2010, 59(2): 347-357.
doi: 10.2337/db09-0016 pmid: 19934001 |
[7] | Zhu Y, Ruan S, Shen H, et al. Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB[J]. Int Immunopharmacol, 2021, 101(Pt B): 108290. |
[8] |
Tran S, Baba I, Poupel L, et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis[J]. Immunity, 2020, 53(3): 627-640.e625.
doi: S1074-7613(20)30233-8 pmid: 32562600 |
[9] |
Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426.
doi: 10.1136/gutjnl-2011-300304 pmid: 21813474 |
[10] | Pan J, Ou Z, Cai C, et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release[J]. Cell Immunol, 2018, 332(111-120. |
[11] |
Yu Y, Liu Y, An W, et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019, 129(2): 546-555.
doi: 10.1172/JCI121842 pmid: 30561388 |
[12] |
Miyao M, Kotani H, Ishida T, et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression[J]. Lab Invest, 2015, 95(10): 1130-1144.
doi: 10.1038/labinvest.2015.95 pmid: 26214582 |
[13] |
Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 349-364.
doi: 10.1038/s41575-018-0009-6 pmid: 29740166 |
[14] |
Jenne CN, Kubes P. Immune surveillance by the liver[J]. Nat Immunol, 2013, 14(10): 996-1006.
doi: 10.1038/ni.2691 pmid: 24048121 |
[15] |
Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice[J]. Hepatology, 2013, 58(2): 589-602.
doi: 10.1002/hep.26267 pmid: 23322710 |
[16] |
Aarts S, Reiche M, den Toom M, et al. Depletion of CD40 on CD11c(+) cells worsens the metabolic syndrome and ameliorates hepatic inflammation during NASH[J]. Sci Rep, 2019, 9(1): 14702.
doi: 10.1038/s41598-019-50976-6 URL |
[17] |
McPherson S, Hardy T, Henderson E, et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management[J]. J Hepatol, 2015, 62(5): 1148-1155.
doi: 10.1016/j.jhep.2014.11.034 pmid: 25477264 |
[18] |
Connolly MK, Bedrosian AS, Mallen-St Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha[J]. J Clin Invest, 2009, 119(11): 3213-3225.
doi: 10.1172/JCI37581 pmid: 19855130 |
[19] |
Haas JT, Vonghia L, Mogilenko DA, et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution[J]. Nat Metab, 2019, 1(6): 604-614.
doi: 10.1038/s42255-019-0076-1 pmid: 31701087 |
[20] |
Harmon C, Robinson MW, Fahey R, et al. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver[J]. Eur J Immunol, 2016, 46(9): 2111-2120.
doi: 10.1002/eji.201646559 pmid: 27485474 |
[21] |
Moretta L, Montaldo E, Vacca P, et al. Human natural killer cells: Origin, receptors, function, and clinical applications[J]. Int Arch Allergy Immunol, 2014, 164(4): 253-264.
doi: 10.1159/000365632 URL |
[22] |
Norris S, Collins C, Doherty DG, et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes[J]. J Hepatol, 1998, 28(1): 84-90.
pmid: 9537869 |
[23] |
Bachiller M, Battram AM, Perez-Amill L, et al. Natural killer cells in immunotherapy: Are we nearly there?[J]. Cancers (Basel), 2020, 12(11): 3139.
doi: 10.3390/cancers12113139 URL |
[24] |
Peng H, Jiang X, Chen Y, et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation[J]. J Clin Invest, 2013, 123(4): 1444-1456.
doi: 10.1172/JCI66381 pmid: 23524967 |
[25] | Jin H, Jia Y, Yao Z, et al. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell[J]. Cell Signal, 2017, 33(79-85. |
[26] |
Vermijlen D, Luo D, Froelich CJ, et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway[J]. J Leukoc Biol, 2002, 72(4): 668-676.
doi: 10.1189/jlb.72.4.668 URL |
[27] |
Lynch L, Nowak M, Varghese B, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production[J]. Immunity, 2012, 37(3): 574-587.
doi: 10.1016/j.immuni.2012.06.016 pmid: 22981538 |
[28] |
Ji Y, Sun S, Xu A, et al. Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity[J]. J Biol Chem, 2012, 287(17): 13561-13571.
doi: 10.1074/jbc.M112.350066 pmid: 22396530 |
[29] |
Hams E, Locksley RM, McKenzie AN, et al. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice[J]. J Immunol, 2013, 191(11): 5349-5353.
doi: 10.4049/jimmunol.1301176 pmid: 24166975 |
[30] |
Michelet X, Dyck L, Hogan A, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses[J]. Nat Immunol, 2018, 19(12): 1330-1340.
doi: 10.1038/s41590-018-0251-7 pmid: 30420624 |
[31] |
Diedrich T, Kummer S, Galante A, et al. Characterization of the immune cell landscape of patients with NAFLD[J]. PLoS One, 2020, 15(3): e0230307.
doi: 10.1371/journal.pone.0230307 URL |
[32] |
Tian Z, Sun R, Wei H, et al. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: Leptin as a critical regulator in NK cell development and activation[J]. Biochem Biophys Res Commun, 2002, 298(3): 297-302.
doi: 10.1016/S0006-291X(02)02462-2 URL |
[33] |
Liu K, Wang FS, Xu R. Neutrophils in liver diseases: Pathogenesis and therapeutic targets[J]. Cell Mol Immunol, 2021, 18(1): 38-44.
doi: 10.1038/s41423-020-00560-0 pmid: 33159158 |
[34] |
Zhou Z, Xu MJ, Cai Y, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(3): 399-413.
doi: 10.1016/j.jcmgh.2018.01.003 pmid: 29552626 |
[35] |
Khoury T, Mari A, Nseir W, et al. Neutrophil-to-lymphocyte ratio is independently associated with inflammatory activity and fibrosis grade in nonalcoholic fatty liver disease[J]. Eur J Gastroenterol Hepatol, 2019, 31(9): 1110-1115.
doi: 10.1097/MEG.0000000000001393 URL |
[36] |
van der Windt DJ, Sud V, Zhang H, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis[J]. Hepatology, 2018, 68(4): 1347-1360.
doi: 10.1002/hep.29914 pmid: 29631332 |
[37] |
Ou R, Liu J, Lv M, et al. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice[J]. Endocrine, 2017, 57(1): 72-82.
doi: 10.1007/s12020-017-1323-4 pmid: 28508193 |
[38] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820.
doi: 10.1016/j.cell.2010.01.022 pmid: 20303872 |
[39] |
Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome[J]. Curr Opin Immunol, 2009, 21(1): 10-16.
doi: 10.1016/j.coi.2009.01.006 pmid: 19223160 |
[40] |
Arrese M, Cabrera D, Kalergis AM, et al. Innate immunity and inflammation in NAFLD/NASH[J]. Dig Dis Sci, 2016, 61(5): 1294-1303.
doi: 10.1007/s10620-016-4049-x URL |
[41] |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384.
doi: 10.1038/ni.1863 pmid: 20404851 |
[42] |
Rivera CA, Gaskin L, Allman M, et al. Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis[J]. BMC Gastroenterol, 2010, 10:52.
doi: 10.1186/1471-230X-10-52 pmid: 20509914 |
[43] |
Miura K, Yang L, van Rooijen N, et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice[J]. Hepatology, 2013, 57(2): 577-589.
doi: 10.1002/hep.26081 pmid: 22987396 |
[44] |
Carpino G, Del Ben M, Pastori D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD[J]. Hepatology, 2020, 72(2): 470-485.
doi: 10.1002/hep.31056 pmid: 31808577 |
[45] | Cai J, Xu M, Zhang X, et al. Innate immune signaling in nonalcoholic fatty liver disease and cardiovascular diseases[J]. Annu Rev Pathol, 2019, 14(153-184. |
[46] |
Spruss A, Kanuri G, Wagnerberger S, et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice[J]. Hepatology, 2009, 50(4): 1094-1104.
doi: 10.1002/hep.23122 pmid: 19637282 |
[47] |
Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(3): G433-441.
doi: 10.1152/ajpgi.00163.2009 URL |
[48] |
Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis[J]. Fibrogenesis Tissue Repair, 2010, 3:21.
doi: 10.1186/1755-1536-3-21 URL |
[49] |
Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice[J]. Gastroenterology, 2010, 139(1): 323-334.e327.
doi: 10.1053/j.gastro.2010.03.052 pmid: 20347818 |
[50] |
Alegre NS, Garcia CC, Billordo LA, et al. Limited expression of TLR9 on T cells and its functional consequences in patients with nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2020, 26(2): 216-226.
doi: 10.3350/cmh.2019.0074 pmid: 31795627 |
[51] |
Takeuchi M, Takino JI, Sakasai-Sakai A, et al. Toxic AGE (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD[J]. Nutrients, 2017, 9(6) 634:
doi: 10.3390/nu9060634 URL |
[52] |
Son S, Hwang I, Han SH, et al. Advanced glycation end products impair NLRP3 inflammasome-mediated innate immune responses in macrophages[J]. J Biol Chem, 2017, 292(50): 20437-20448.
doi: 10.1074/jbc.M117.806307 pmid: 29051224 |
[53] |
Leung C, Herath CB, Jia Z, et al. Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22(35): 8026-8040.
doi: 10.3748/wjg.v22.i35.8026 URL |
[54] |
Fernando DH, Forbes JM, Angus PW, et al. Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products[J]. Int J Mol Sci, 2019, 20(20):5037.
doi: 10.3390/ijms20205037 URL |
[55] |
Palma-Duran SA, Kontogianni MD, Vlassopoulos A, et al. Serum levels of advanced glycation end-products (AGEs) and the decoy soluble receptor for AGEs (sRAGE) can identify non-alcoholic fatty liver disease in age-, sex- and BMI-matched normo-glycemic adults[J]. Metabolism, 2018, 83:120-127.
doi: 10.1016/j.metabol.2018.01.023 URL |
[56] |
de Carvalho Ribeiro M, Szabo G. Role of the Inflammasome in liver disease[J]. Annu Rev Pathol, 2022, 17:345-365.
doi: 10.1146/annurev-pathmechdis-032521-102529 URL |
[57] |
Sui YH, Luo WJ, Xu QY, et al. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation[J]. World J Gastroenterol, 2016, 22(8): 2533-2544.
doi: 10.3748/wjg.v22.i8.2533 URL |
[58] |
Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5): 1037-1046.
doi: S0168-8278(17)30056-9 pmid: 28167322 |
[59] |
Li X, Shi Z, Zhu Y, et al. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice[J]. Br J Pharmacol, 2020, 177(15): 3591-3607.
doi: 10.1111/bph.15083 URL |
[60] |
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response[J]. Mol Metab, 2017, 6(2): 174-184.
doi: S2212-8778(16)30244-7 pmid: 28180059 |
[61] |
Schattenberg JM, Singh R, Wang Y, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice[J]. Hepatology, 2006, 43(1): 163-172.
pmid: 16374858 |
[62] |
Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance[J]. Nature, 2002, 420(6913): 333-336.
doi: 10.1038/nature01137 URL |
[63] |
Singh R, Wang Y, Xiang Y, et al. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance[J]. Hepatology, 2009, 49(1): 87-96.
doi: 10.1002/hep.22578 pmid: 19053047 |
[64] |
Tuncman G, Hirosumi J, Solinas G, et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance[J]. Proc Natl Acad Sci U S A, 2006, 103(28): 10741-10746.
pmid: 16818881 |
[65] |
González-Terán B, Matesanz N, Nikolic I, et al. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration[J]. Embo J, 2016, 35(5): 536-552.
doi: 10.15252/embj.201591857 pmid: 26843485 |
[66] | Morrison DK. MAP kinase pathways[J]. Cold Spring Harb Perspect Biol, 2012, 4(11): a011254. |
[67] |
Hemi R, Yochananov Y, Barhod E, et al. p38 mitogen-activated protein kinase-dependent transactivation of ErbB receptor family: A novel common mechanism for stress-induced IRS-1 serine phosphorylation and insulin resistance[J]. Diabetes, 2011, 60(4): 1134-1145.
doi: 10.2337/db09-1323 pmid: 21386087 |
[68] |
Zhang X, Fan L, Wu J, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization[J]. J Hepatol, 2019, 71(1): 163-174.
doi: S0168-8278(19)30184-9 pmid: 30914267 |
[69] |
Liu J, Dalamaga M. Emerging roles for stress kinase p38 and stress hormone fibroblast growth factor 21 in NAFLD development[J]. Metabol Open, 2021, 12: 100153.
doi: 10.1016/j.metop.2021.100153 URL |
[70] |
Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases[J]. Cells, 2019, 8(12): 1597.
doi: 10.3390/cells8121597 URL |
[71] |
Liu TY, Xiong XQ, Ren XS, et al. FNDC5 alleviates hepatosteatosis by restoring AMPK/mTOR-mediated autophagy, fatty acid oxidation, and lipogenesis in mice[J]. Diabetes, 2016, 65(11): 3262-3275.
doi: 10.2337/db16-0356 URL |
[72] |
Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH[J]. J Gastroenterol, 2018, 53(3): 362-376.
doi: 10.1007/s00535-017-1415-1 pmid: 29247356 |
[73] |
Chalasani N, Abdelmalek MF, Garcia-Tsao G, et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension[J]. Gastroenterology, 2020, 158(5): 1334-1345.e1335.
doi: S0016-5085(19)41895-7 pmid: 31812510 |
[74] | Diehl A, Harrison S, Caldwell S, et al. JKB-121 in patients with nonalcoholic steatohepatitis: A phase 2 double blind randomized placebo control study[J]. Journal of Hepatology, 2018, 68(S103. |
[75] |
Ilan Y, Shailubhai K, Sanyal A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: A novel gut-immune system-based therapy for metaflammation and NASH[J]. Clin Exp Immunol, 2018, 193(3): 275-283.
doi: 10.1111/cei.13159 pmid: 29920654 |
[76] |
Sumpter TL, Thomson AW. The STATus of PD-L1 (B7-H1) on tolerogenic APCs[J]. Eur J Immunol, 2011, 41(2): 286-290.
doi: 10.1002/eji.201041353 pmid: 21267998 |
[77] |
Hu Q, Zhang W, Wu Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects[J]. Pharmacol Res, 2021, 165: 105444.
doi: 10.1016/j.phrs.2021.105444 URL |
[78] |
Xu G, Fu S, Zhan X, et al. Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90[J]. JCI Insight, 2021, 6(2): e134601.
doi: 10.1172/jci.insight.134601 URL |
[79] | 徐拥建, 杨钦河, 韩莉, 等. 疏肝健脾方药对NAFLD大鼠肝细胞SREBP-1c、SCD-1 mRNA及蛋白表达的影响[J]. 中药材, 2014, 37(1): 80-86. |
[80] | 章常华, 马广强, 邓永兵, 等. 葛根芩连汤对KK-Ay糖尿病小鼠血浆中LPS、TNF-α、IL-6及肠道菌群的影响[J]. 中草药, 2017, 48(8): 1611-1616. |
[81] | 谢添弘, 陈润花, 毛唐友, 等. 茵陈二陈汤对非酒精性脂肪性肝炎模型细胞JNK1、AP-1蛋白表达的影响[J]. 中国中西医结合消化杂志, 2017, 25(12): 943-947. |
[82] |
Wei X, Hou W, Liang J, et al. Network pharmacology-based analysis on the potential biological mechanisms of sinisan against non-alcoholic fatty liver disease[J]. Front Pharmacol, 2021, 12: 693701.
doi: 10.3389/fphar.2021.693701 URL |
[1] | 王奕涵, 秦旭雁, 韩宣泽, 王樱洁, 高菲菲, 陈春红, 张岭楠, 张芳. 利伐沙班用于HASBLED评分≥3分的高龄非瓣膜性心房颤动患者的有效性和安全性[J]. 临床荟萃, 2024, 39(2): 121-124. |
[2] | 金鑫, 吴金玲, 尹丽丽. 持续性植物状态促醒机制及治疗研究进展[J]. 临床荟萃, 2024, 39(2): 172-176. |
[3] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[4] | 崔兰丹, 杨春燕. 脓毒症患者甲状腺激素的变化特点及研究进展[J]. 临床荟萃, 2024, 39(1): 70-74. |
[5] | 邹子良, 余海, 王迪, 褚泰运, 李驹, 钱宝堂. 冠状动脉慢性完全闭塞病变介入治疗研究现状[J]. 临床荟萃, 2024, 39(1): 80-83. |
[6] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[7] | 王鑫, 张展, 刘铎, 谢萍. 铁缺乏与肺动脉高压相关性的研究进展[J]. 临床荟萃, 2023, 38(9): 838-844. |
[8] | 陈聪水, 李园, 陈淑芳. 重视儿童胆源性胰腺炎的中西医诊治(附1例分析)[J]. 临床荟萃, 2023, 38(8): 726-730. |
[9] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[10] | 侯有玲, 李奕, 关红玉, 罗红霞. 目标导向液体治疗在脑肿瘤切除术中应用效果的meta分析[J]. 临床荟萃, 2023, 38(8): 686-693. |
[11] | 王玥, 陈辉, 岑奕, 张哲, 张欣, 李宗锡, 陈珍珍, 贾彤彤, 章美玲. 超声引导下侧入路颈脊神经后支三氧联合注射松解治疗颈脊神经后支源性慢性颈肩痛[J]. 临床荟萃, 2023, 38(8): 714-718. |
[12] | 张会, 丁东瑞, 金天然. 新型冠状病毒SARS-CoV-2的相关研究——过去与未来[J]. 临床荟萃, 2023, 38(7): 638-646. |
[13] | 郭文惠, 雷皓月, 潘友卓, 张琦. 质膜膜泡关联蛋白的生物学功能研究进展[J]. 临床荟萃, 2023, 38(7): 647-653. |
[14] | 陈瑾, 吕鸿雁, 刘晗, 刘建宁, 卢佳配, 张金巧. 靶向BCMA的嵌合抗原受体T细胞治疗三重难治性多发性骨髓瘤的研究进展[J]. 临床荟萃, 2023, 38(7): 654-658. |
[15] | 杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||