临床荟萃 ›› 2022, Vol. 37 ›› Issue (9): 860-864.doi: 10.3969/j.issn.1004-583X.2022.09.019
• 综述 • 上一篇
收稿日期:
2022-06-21
出版日期:
2022-09-20
发布日期:
2022-11-21
通讯作者:
周泽平
E-mail:zhouzeping@outlook.com
基金资助:
Received:
2022-06-21
Online:
2022-09-20
Published:
2022-11-21
摘要:
血管性血友病(von Willebrand disease, VWD)是最常见的遗传出血性疾病,临床表现异质性大,出血严重时可危及患者生命。快速、精准的诊断有助于疾病的治疗。目前,实验室检测仍是VWD诊断的主要手段,但突变基因的低外显率、实验室的高变异性和大量影响血管性血友病因子(von Willebrand factor, VWF)水平测定的干扰因素使诊断变得复杂,甚至误诊。近年来,二代测序技术(next-generation sequencing,NGS)已应用于临床,并且具有高通量、高灵敏度、价格低廉等优点,可准确发现VWF基因缺陷,现已成为诊断VWD的有效手段之一。本文就NGS在VWD诊断中的应用进行综述,旨在为临床诊断提供依据。
中图分类号:
杨文, 周泽平. 二代测序技术在血管性血友病诊断中的应用[J]. 临床荟萃, 2022, 37(9): 860-864.
VWD 类型 | 遗传 模式 | 实验室检测 | 外显子 变异位置 | 结构域 变异位置 | 致病机制 | 热点突变 | ||||
---|---|---|---|---|---|---|---|---|---|---|
VWF:Ag | VWF:RCo | FVIII:C | VWF:RCo/ VWF:Ag | RIPA | ||||||
1 | AD | ↓ | ↓ | N/↓ | >0.7 | ↓ | 1~52 | 全部 | VWF的合成或分泌受影响;血浆VWF的清除加快 | C2257S,L2207P,W1144G,I1415N等 |
2A | AD,AR | ↓↓ | ↓ | N/↓ | <0.7 | ↓ | 2~28, 51~52 | A1,A2 | VWF对ADAMTS13 水解酶敏感性增加 | S1506L,Y1605S,R1597W等 |
D',D3, | VWF在胞内滞留 | C1149R等 | ||||||||
D1,D2,CK | VWF多聚化受影响 | E248G等 | ||||||||
2B | AD | ↓↓ | ↓ | N/↓ | <0.7 | ↑ | 28 | A1 | 血小板清除率增加;高分子量VWF多聚体丢失 | R1306W,R1308C,V1316M,R1341Q等 |
2M | AD | ↓ | ↓ | N/↓ | <0.7 | ↓ | 28~32 | A1,A2, A3 | VWF与血小板的黏附能力减弱 | 204delC,S1387I等 |
2N | AR | N | N | ↓ | >0.7 | N | 17~27 | D2,D',D3 | FVIII失去保护被降解 | R760C,R763G,Y795C,C788Y等 |
3 | AR | ↓↓↓ | ↓↓↓ | ↓↓↓ | - | ↓↓↓ | 1~52 | 全部 | VWF在胞内滞留;基因缺失干扰VWF的正确折叠和生物合成 | R1659X,S85P,C2671Y,C2739Y等 |
表1 VWD各类型的实验室检测特点、热点突变及致病机制
VWD 类型 | 遗传 模式 | 实验室检测 | 外显子 变异位置 | 结构域 变异位置 | 致病机制 | 热点突变 | ||||
---|---|---|---|---|---|---|---|---|---|---|
VWF:Ag | VWF:RCo | FVIII:C | VWF:RCo/ VWF:Ag | RIPA | ||||||
1 | AD | ↓ | ↓ | N/↓ | >0.7 | ↓ | 1~52 | 全部 | VWF的合成或分泌受影响;血浆VWF的清除加快 | C2257S,L2207P,W1144G,I1415N等 |
2A | AD,AR | ↓↓ | ↓ | N/↓ | <0.7 | ↓ | 2~28, 51~52 | A1,A2 | VWF对ADAMTS13 水解酶敏感性增加 | S1506L,Y1605S,R1597W等 |
D',D3, | VWF在胞内滞留 | C1149R等 | ||||||||
D1,D2,CK | VWF多聚化受影响 | E248G等 | ||||||||
2B | AD | ↓↓ | ↓ | N/↓ | <0.7 | ↑ | 28 | A1 | 血小板清除率增加;高分子量VWF多聚体丢失 | R1306W,R1308C,V1316M,R1341Q等 |
2M | AD | ↓ | ↓ | N/↓ | <0.7 | ↓ | 28~32 | A1,A2, A3 | VWF与血小板的黏附能力减弱 | 204delC,S1387I等 |
2N | AR | N | N | ↓ | >0.7 | N | 17~27 | D2,D',D3 | FVIII失去保护被降解 | R760C,R763G,Y795C,C788Y等 |
3 | AR | ↓↓↓ | ↓↓↓ | ↓↓↓ | - | ↓↓↓ | 1~52 | 全部 | VWF在胞内滞留;基因缺失干扰VWF的正确折叠和生物合成 | R1659X,S85P,C2671Y,C2739Y等 |
[1] |
Fogarty H, Doherty D, O'Donnell JS. New developments in von Willebrand disease[J]. Br J Haematol, 2020, 191(3):329-339.
doi: 10.1111/bjh.16681 URL |
[2] |
Leebeek FWG, Atiq F. How I manage severe von Willebrand disease[J]. Br J Haematol, 2019, 187(4):418-430.
doi: 10.1111/bjh.16186 URL |
[3] |
Sharma R, Flood VH. Advances in the diagnosis and treatment of von Willebrand disease[J]. Hematology Am Soc Hematol Educ Program, 2017, 2017(1):379-384.
doi: 10.1182/asheducation-2017.1.379 pmid: 29222282 |
[4] |
Baronciani L, Peyvandi F. How we make an accurate diagnosis of von Willebrand disease[J]. Thromb Res, 2020, 196:579-589.
doi: 10.1016/j.thromres.2019.07.010 pmid: 31353031 |
[5] |
Weyand AC, Flood VH. Von Willebrand disease: Current status of diagnosis and management[J]. Hematol Oncol Clin North Am, 2021, 35(6):1085-1101.
doi: 10.1016/j.hoc.2021.07.004 URL |
[6] |
Vinkšel M, Writzl K, Maver A, et al. Improving diagnostics of rare genetic diseases with NGS approaches[J]. J Community Genet, 2021, 12(2):247-256.
doi: 10.1007/s12687-020-00500-5 pmid: 33452619 |
[7] |
Yadegari H, Oldenburg J. The current understanding of molecular pathogenesis of quantitative von Willebrand disease, types 1 and 3[J]. Hamostaseologie, 2020, 40(1):105-118.
doi: 10.1055/s-0039-3400260 pmid: 31968368 |
[8] |
Sacco M, Lancellotti S, Ferrarese M, et al. Noncanonical type 2B von Willebrand disease associated with mutations in the VWF D'D3 and D4 domains[J]. Blood Adv, 2020, 4(14):3405-3415.
doi: 10.1182/bloodadvances.2020002334 pmid: 32722784 |
[9] |
Starke RD, Paschalaki KE, Dyer CE, et al. Cellular and molecular basis of von Willebrand disease: Studies on blood outgrowth endothelial cells[J]. Blood, 2013, 121(14):2773-2784.
doi: 10.1182/blood-2012-06-435727 pmid: 23355534 |
[10] |
Pagliari MT, Baronciani L, Cordiglieri C, et al. The dominant p.Thr274Pro mutation in the von Willebrand factor propeptide causes the von Willebrand disease type 1 phenotype in two unrelated patients[J]. Haemophilia, 2022, 28(2):292-300.
doi: 10.1111/hae.14494 pmid: 35064738 |
[11] |
Gill JC, Endres-Brooks J, Bauer PJ, et al. The effect of ABO blood group on the diagnosis of von Willebrand disease[J]. Blood, 1987, 69(6):1691-1695.
pmid: 3495304 |
[12] |
Arisz RA, de Vries JJ, Schols SEM, et al. Interaction of von Willebrand factor with blood cells in flow models: A systematic review[J]. Blood Adv, 2022, 6(13):3979-3990.
doi: 10.1182/bloodadvances.2021006405 pmid: 35816358 |
[13] | Doherty D, Lavin M, Byrne MB, et al. Enhanced VWF clearance in low VWF pathogenesis-limitations of VWFpp/VWF: Ag ratio and clinical significance[J]. Blood Adv, 2022, bloodadvances.2022007340. |
[14] |
Prior C, Sims K, Seligman K, et al. Peripartum management of a parturient with type 1C (clearance) von Willebrand disease[J]. Int J Obstet Anesth, 2020, 44:112-115.
doi: S0959-289X(20)30110-2 pmid: 32942216 |
[15] |
Manderstedt E, Lind-Halldén C, Lethagen S, et al. Genetic variation in the C-type lectin receptor CLEC4M in type 1 von Willebrand disease patients[J]. PLoS One, 2018, 13(2):e0192024.
doi: 10.1371/journal.pone.0192024 URL |
[16] |
Swystun LL, Notley C, Georgescu I, et al. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner[J]. J Thromb Haemost, 2019, 17(4):681-694.
doi: 10.1111/jth.14404 pmid: 30740857 |
[17] |
Lind-Hallden C, Manderstedt E, Carlberg D, et al. Genetic variation in the syntaxin-binding protein STXBP5 in type 1 von Willebrand disease patients[J]. Thromb Haemost, 2018, 118(8): 1382-1389.
doi: 10.1055/s-0038-1661352 URL |
[18] |
Sabater-Lleal M, Huffman JE, de Vries PS, et al. Genome-Wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels[J]. Circulation, 2019, 139(5):620-635.
doi: 10.1161/CIRCULATIONAHA.118.034532 pmid: 30586737 |
[19] |
Shigekiyo T, Udaka K, Sekimoto E, et al. Identification of a homozygous missense mutation (p.Cys379Gly) in the D1 domain of von Willebrand factor propeptide in a family with type 2A (IIC) von Willebrand disease circulation[J]. Haemophilia, 2018, 24(6):e422-e425.
doi: 10.1111/hae.13605 URL |
[20] |
Woods AI, Paiva J, Primrose DM, et al. Type 2A and 2M von Willebrand disease: Differences in phenotypic parameters according to the affected domain by disease-causing variants and assessment of pathophysiological mechanisms[J]. Semin Thromb Hemost, 2021, 47(7):862-874.
doi: 10.1055/s-0041-1726097 pmid: 34130347 |
[21] | Othman M, Favaloro EJ. 2B von Willebrand disease diagnosis: Considerations reflecting on 2021 multisociety guidelines[J]. Res Pract Thromb Haemost, 2021, 5(8):e12635. |
[22] |
Bury L, Falcinelli E, Kuchi Bhotla H, et al. A p.Arg127Gln variant in GPIbα LRR5 allosterically enhances affinity for VWF: A novel form of platelet-type VWD[J]. Blood Adv, 2022, 6(7):2236-2246.
doi: 10.1182/bloodadvances.2021005463 URL |
[23] |
de Jong A, Eikenboom J. Von Willebrand disease mutation spectrum and associated mutation mechanisms[J]. Thromb Res, 2017, 159:65-75.
doi: S0049-3848(17)30510-8 pmid: 28987708 |
[24] |
Maas DPMSM, Atiq F, Blijlevens NMA, et al. Von Willebrand disease type 2M: Correlation between genotype and phenotype[J]. J Thromb Haemost, 2022, 20(2):316-327.
doi: 10.1111/jth.15586 URL |
[25] |
Shida Y, Rydz N, Stegner D, et al. Analysis of the role of von Willebrand factor, platelet glycoprotein VI-, and α2β1-mediated collagen binding in thrombus formation[J]. Blood, 2014, 124(11):1799-1807.
doi: 10.1182/blood-2013-09-521484 pmid: 25051961 |
[26] |
Michiels JJ, Gadisseur A, Vangenegten I, et al. Recessive von Willebrand disease type 2 Normandy: Variable expression of mild hemophilia and VWD type 1[J]. Acta Haematol, 2009, 121(2-3):119-127.
doi: 10.1159/000214852 URL |
[27] |
Casonato A, Cozzi MR, Ferrari S, et al. The lesson learned from the new c.2547-1G>T mutation combined with p.R854Q: When a type 2N mutation reveals a quantitative von Willebrand factor defect[J]. Thromb Haemost, 2022, 122(9):1479-1485.
doi: 10.1055/a-1777-6881 URL |
[28] |
Casonato A, Galletta E, Sarolo L, et al. Type 2N von Willebrand disease: Characterization and diagnostic difficulties[J]. Haemophilia, 2018, 24(1):134-140.
doi: 10.1111/hae.13366 pmid: 29115006 |
[29] |
Bowman M, Tuttle A, Notley C, et al. The genetics of Canadian type 3 von Willebrand disease: Further evidence for co-dominant inheritance of mutant alleles[J]. J Thromb Haemost, 2013, 11 (3):512-520.
doi: 10.1111/jth.12130 pmid: 23311757 |
[30] |
Kim HJ, Kim SK, Yoo KY, et al. Molecular genetics of von Willebrand disease in Korean patients: Novel variants and limited diagnostic utility of multiplex ligation-dependent probe amplification analyses[J]. Ann Lab Med, 2019, 39(6):545-551.
doi: 10.3343/alm.2019.39.6.545 pmid: 31240882 |
[1] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[2] | 赵浩天, 李丽. 肺超声在心脏急重症疾病合并肺水肿中应用的研究进展[J]. 临床荟萃, 2023, 38(9): 832-837. |
[3] | 陈聪水, 李园, 陈淑芳. 重视儿童胆源性胰腺炎的中西医诊治(附1例分析)[J]. 临床荟萃, 2023, 38(8): 726-730. |
[4] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[5] | 李蕾, 赵永超, 郑加香. 儿童Graves病的诊治新进展[J]. 临床荟萃, 2023, 38(5): 477-480. |
[6] | 黎恒楠, 黄艳, 赵亚娟, 胡桂才. 血清CTRP5与持续非卧床腹膜透析患者左室舒张功能异常的相关性及其诊断价值[J]. 临床荟萃, 2023, 38(4): 324-329. |
[7] | 柴春艳, 王婷. 老年高钙血症3例并文献复习[J]. 临床荟萃, 2023, 38(2): 166-169. |
[8] | 王军宏, 高振华, 章荣龙, 姬浩民, 赵信科, 达明绪. 1980-2021年胃癌诊断文献相关质量分析——基于Web of Science 数据库的文献计量学分析[J]. 临床荟萃, 2023, 38(12): 1117-1124. |
[9] | 刘晔, 阮桂仁, 刘晓清, 侍效春, 费贵军. 胰腺结核的诊断及鉴别诊断[J]. 临床荟萃, 2023, 38(10): 898-903. |
[10] | 庞姝, 张铭凯, 白红梅, 吴咏冬. 先天性无痛无汗症1例并文献复习[J]. 临床荟萃, 2023, 38(1): 64-67. |
[11] | 周景坤, 杨彩虹, 冯涛, 崔华英. 半乳甘露聚糖在支气管扩张症合并肺曲霉菌病中的诊断价值[J]. 临床荟萃, 2022, 37(9): 799-803. |
[12] | 王珍珍, 赵仕一, 冯鸶然, 马博清. 中性粒细胞和淋巴细胞比值预测2型糖尿病患者微量白蛋白尿的价值[J]. 临床荟萃, 2022, 37(9): 808-812. |
[13] | 钟鸣, 李伟. 无症状型甲状旁腺功能亢进症的诊治进展[J]. 临床荟萃, 2022, 37(7): 648-652. |
[14] | 陈晓婷, 严争, 刘凡, 危夷. 血清胱抑素C与β2-微球蛋白在新生儿窒息后肾功能损伤中的早期诊断价值[J]. 临床荟萃, 2022, 37(5): 437-440. |
[15] | 徐敬然, 李菲菲, 解承鑫, 弓慧, 栾其昀, 李黎. 径向超声支气管镜联合快速现场评估在细菌学阴性肺结核诊断中的应用[J]. 临床荟萃, 2022, 37(3): 220-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||