临床荟萃 ›› 2023, Vol. 38 ›› Issue (5): 465-468.doi: 10.3969/j.issn.1004-583X.2023.05.015
收稿日期:
2022-09-16
出版日期:
2023-05-20
发布日期:
2023-07-20
通讯作者:
陈永清, Email:chyqmd@163.com
基金资助:
Received:
2022-09-16
Online:
2023-05-20
Published:
2023-07-20
摘要:
目前糖尿病心血管并发症的发病率和病死率不断提高,其中糖尿病心肌病这一独立于冠状动脉疾病、高血压心脏病和心脏瓣膜病以外的以代谢障碍和心功能障碍为特征的心血管并发症的发生与线粒体功能障碍有关。研究表明,线粒体转录因子A(mitochondrial transcription factor A,TFAM)的表达异常可使线粒体功能障碍,而高糖环境可使TFAM表达降低。本文就线粒体功能紊乱致糖尿病心肌病的发生机制、TFAM对心肌细胞线粒体功能的影响、TFAM介导的线粒体功能障碍在糖尿病心肌病发生发展中的作用进行综述,以期为临床糖尿病心肌病的诊治提供理论依据。
中图分类号:
吕丽丽, 翟满满, 丁小艳, 陈永清. 线粒体转录因子A介导的线粒体功能障碍在糖尿病心肌病中的作用[J]. 临床荟萃, 2023, 38(5): 465-468.
[1] |
Zhang Y, Song H, Bai J, et al. Association between the stress hyperglycemia ratio and severity of coronary artery disease under different glucose metabolic states[J]. Cardiovasc Diabetol, 2023, 22(1): 29.
doi: 10.1186/s12933-023-01759-x pmid: 36755256 |
[2] |
Marfella R, Amarelli C, Cacciatore F, et al. Lipid accumulation in hearts transplanted from nondiabetic donors to diabetic recipients[J]. J Am Coll Cardiol, 2020, 75(11): 1249-1262.
doi: S0735-1097(20)30262-X pmid: 32192650 |
[3] |
Tan Y, Zhang Z, Zheng C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9): 585-607.
doi: 10.1038/s41569-020-0339-2 pmid: 32080423 |
[4] |
Liu C, Yao Q, Hu T, et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J]. Mol Ther Nucleic Acids, 2022, 30: 198-207.
doi: 10.1016/j.omtn.2022.09.019 URL |
[5] |
Yang R, Zhang X, Zhang Y, et al. Grpel2 maintains cardiomyocyte survival in diabetic cardiomyopathy through DLST-mediated mitochondrial dysfunction: A proof-of-concept study[J]. J Transl Med, 2023, 21(1): 200.
doi: 10.1186/s12967-023-04049-y pmid: 36927450 |
[6] |
Zhang Q, Li D, Dong X, et al. LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy[J]. Sci China Life Sci, 2022, 65(6): 1198-1212.
doi: 10.1007/s11427-021-1982-8 |
[7] |
Ma H, Jiang T, Tang W, et al. Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice[J]. Clin Sci (Lond), 2020, 134(16): 2161-2175.
doi: 10.1042/CS20200530 pmid: 32794577 |
[8] |
Han X, Wang J, Li R, et al. Placental mesenchymal stem cells alleviate podocyte injury in diabetic kidney disease by modulating mitophagy via the SIRT1-PGC-1alpha-TFAM pathway[J]. Int J Mol Sci, 2023, 24(5):4696.
doi: 10.3390/ijms24054696 URL |
[9] | 周益盛, 荆哲, 刘峰舟, 等. 糖尿病小鼠心肌组织中线粒体转录因子A的表达[J]. 山西医科大学学报, 2017, 48(3): 211-214. |
[10] |
Tomita K, Kuwahara Y, Igarashi K, et al. Mitochondrial dysfunction in diseases, longevity, and treatment resistance: Tuning mitochondria function as a therapeutic strategy[J]. Genes (Basel), 2021, 12(9): 1348.
doi: 10.3390/genes12091348 URL |
[11] |
Tsushima K, Bugger H, Wende AR, et al. Mitochondrial reactive oxygen species in lipotoxic hearts induces post-translational modifications of AKAP121, DRP1 and OPA1 that promote mitochondrial fission[J]. Circ Res, 2018, 122(1): 58-73.
doi: 10.1161/CIRCRESAHA.117.311307 pmid: 29092894 |
[12] |
Wu W, Ziemann M, Huynh K, et al. Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice[J]. Theranostics, 2021, 11(18): 8993-9008.
doi: 10.7150/thno.62302 pmid: 34522223 |
[13] |
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity[J]. Circ Res, 2018, 122(4): 624-638.
doi: 10.1161/CIRCRESAHA.117.311586 pmid: 29449364 |
[14] |
Al-Azab M, Qaed E, Ouyang X, et al. TL1A/TNFR2-mediated mitochondrial dysfunction of fibroblast-like synoviocytes increases inflammatory response in patients with rheumatoid arthritis via reactive oxygen species generation[J]. FEBS J, 2020, 287(14): 3088-3104.
doi: 10.1111/febs.v287.14 URL |
[15] | Yu LM, Dong X, Xue XD, et al. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6[J]. J Pineal Res, 2021, 70(1): e12698. |
[16] | 陈祎, 袁培培, 高丽媛, 等. 基于AMPK/PPARα/PGC-1α信号通路探讨金合欢素改善代谢综合征大鼠骨骼肌能量代谢紊乱作用机制[J/OL]. 中药药理与临床:1-11[2023-04-13].https://doi.org/10.13412/j.cnki.zyyl.20230216.001. |
[17] |
Morciano G, Boncompagni C, Ramaccini D, et al. Comprehensive analysis of mitochondrial dynamics alterations in heart diseases[J]. Int J Mol Sci, 2023, 24(4):3414.
doi: 10.3390/ijms24043414 URL |
[18] | 王硕, 赵云罡. 非编码RNA通过调控线粒体功能影响心衰进程的研究进展[J/OL]. 生物化学与生物物理进展:1-17[2023-04-13].https://doi.org/10.16476/j.pibb.2022.0385. |
[19] |
Zhang X, Ma X, Zhao M, et al. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes[J]. Biochimie, 2015, 108: 59-67.
doi: 10.1016/j.biochi.2014.11.004 pmid: 25446652 |
[20] | Ikeda M, Ide T, Fujino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress[J]. PLoS One, 2015, 10(3): e0119687. |
[21] |
Yan C, Duanmu X, Zeng L, et al. Mitochondrial DNA: Distribution, mutations, and elimination[J]. Cells, 2019, 8(4):379.
doi: 10.3390/cells8040379 URL |
[22] |
Nguyen NNY, Kim SS, Jo YH. Deregulated mitochondrial DNA in diseases[J]. DNA Cell Biol, 2020, 39(8): 1385-1400.
doi: 10.1089/dna.2019.5220 pmid: 31944832 |
[23] |
Feng J, Chen Z, Ma Y, et al. AKAP1 contributes to impaired mtDNA replication and mitochondrial dysfunction in podocytes of diabetic kidney disease[J]. Int J Biol Sci, 2022, 18(10): 4026-4042.
doi: 10.7150/ijbs.73493 pmid: 35844803 |
[24] | Liu J, Wang R, Luo N, et al. Mitochondrial DNA copy number in peripheral blood of IgA nephropathy: A cross-sectional study[J]. Ren Fail, 2023, 45(1): 2182133. |
[25] |
Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals[J]. Hum Mol Genet, 2004, 13(9): 935-944.
doi: 10.1093/hmg/ddh109 pmid: 15016765 |
[26] |
Hao L, Zhong W, Dong H, et al. ATF4 activation promotes hepatic mitochondrial dysfunction by repressing NRF1-TFAM signalling in alcoholic steatohepatitis[J]. Gut, 2021, 70(10): 1933-1945.
doi: 10.1136/gutjnl-2020-321548 URL |
[27] | Lu P, Hogan-Cann AD, Kamboj A, et al. Poly(ADP-ribose) polymerase-1 inhibits mitochondrial respiration by suppressing PGC-1α activity in neurons[J]. Neuropharmacology, 2019, 160: 107755. |
[28] |
Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021, 11(4): 1845-1863.
doi: 10.7150/thno.50905 pmid: 33408785 |
[29] |
Xu W, Boyd RM, Tree MO, et al. Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites[J]. Proc Natl Acad Sci U S A, 2019, 116(36): 17792-17799.
doi: 10.1073/pnas.1911252116 URL |
[30] |
Koh JH, Kim YW, Seo DY, et al. Mitochondrial TFAM as a Signaling regulator between cellular organelles: A perspective on metabolic diseases[J]. Diabetes Metab J, 2021, 45(6): 853-865.
doi: 10.4093/dmj.2021.0138 URL |
[31] |
Theilen NT, Jeremic N, Weber GJ, et al. TFAM overexpression diminishes skeletal muscle atrophy after hindlimb suspension in mice[J]. Arch Biochem Biophys, 2019, 666: 138-147.
doi: S0003-9861(18)30457-0 pmid: 30553768 |
[32] |
Dhalla NS, Shah AK, Tappia PS. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy[J]. Int J Mol Sci, 2020, 21(7): 2413.
doi: 10.3390/ijms21072413 URL |
[33] |
Baldissera G, Sperotto ND, Rosa HT, et al. Effects of crude hydroalcoholic extract of Syzygium cumini (L.) Skeels leaves and continuous aerobic training in rats with diabetes induced by a high-fat diet and low doses of streptozotocin[J]. J Ethnopharmacol, 2016, 194: 1012-1021.
doi: S0378-8741(16)31437-4 pmid: 27794509 |
[34] | Viloria MAD, Li Q, Lu W, et al. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease[J]. Front Cardiovasc Med, 2022, 9: 949744. |
[35] |
Khan S, Ahmad SS, Kamal MA. Diabetic cardiomyopathy: from mechanism to management in a nutshell[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(2): 268-281.
doi: 10.2174/1871530320666200731174724 URL |
[36] | Ma H, Li J. The ginger extract could improve diabetic retinopathy by inhibiting the expression of e/iNOS and G6PDH, apoptosis, inflammation, and angiogenesis[J]. J Food Biochem, 2022, 46(5): e14084. |
[37] |
De Blasio MJ, Huynh N, Deo M, et al. Defining the progression of diabetic cardiomyopathy in a mouse model of type 1 diabetes[J]. Front Physiol, 2020, 11: 124.
doi: 10.3389/fphys.2020.00124 pmid: 32153425 |
[38] |
Lillenes MS, Støen M, Günther CC, et al. Mitochondrial transcription factor A (TFAM) rs1937 and AP endonuclease 1 (APE1) rs1130409 alleles are associated with reduced cognitive performance[J]. Neurosci Lett, 2017, 645: 46-52.
doi: S0304-3940(17)30178-7 pmid: 28242328 |
[39] |
Kunkel GH, Kunkel CJ, Ozuna H, et al. TFAM overexpression reduces pathological cardiac remodeling[J]. Mol Cell Biochem, 2019, 454(1-2): 139-152.
doi: 10.1007/s11010-018-3459-9 pmid: 30353496 |
[1] | 尹惠阳, 蔺雪峰, 韩轩茂. 蛋白激酶B通路、乙酰肝素酶、NADPH氧化酶在心肌缺血再灌注损伤中的作用及相互关系的研究进展[J]. 临床荟萃, 2022, 37(5): 459-462. |
[2] | 叶蒙蒙, 李旎, 徐国栋, 邵国丰. miR-361在心血管疾病的研究进展[J]. 临床荟萃, 2021, 36(9): 843-849. |
[3] | 刘亭, 姬卫东, 杨青松. 脑蛋白水解物对急性脑卒中患者Nrf2氧化应激信号通路的影响[J]. 临床荟萃, 2021, 36(11): 996-1000. |
[4] | 张成1,高泽立2. 双歧杆菌三联活菌肠溶胶囊对便秘型肠易激综合征患者胃肠激素及氧化应激指标的影响[J]. 临床荟萃, 2019, 34(7): 629-632. |
[5] | 周园媛1,王战建2,丘红梅1,李薇1. 2型糖尿病肾病与血清胆红素的关系[J]. 临床荟萃, 2017, 32(9): 767-769,773. |
[6] | 王越晖1,王哲1,刘佳1,蔡露2. 糖尿病心肌病及潜在的干预[J]. 临床荟萃, 2016, 31(9): 932-935. |
[7] | 郭文选,朱瀛谦,沈方臻,王晓妮,潘 飞,陈 晶. Wnt信号通路抑制剂XAV939对人小细胞肺癌H446增殖及凋亡的影响[J]. 临床荟萃, 2016, 31(5): 543-546. |
[8] | 钱正瑶, 李广平, 李娇, 梁雪, 徐昭, 陈艳, 赵辉. 氧化型低密度脂蛋白诱导内皮细胞凋亡中前蛋白转化酶枯草溶菌素9与炎症因子的关系[J]. 临床荟萃, 2016, 31(4): 396-402. |
[9] | 宋玉竹, 李英. 氢气对肾脏疾病的治疗作用及其研究进展[J]. 临床荟萃, 2016, 31(4): 443-446. |
[10] | 杨露, 袁雅冬. PM2.5的氧化损伤机制及其与呼吸系统疾病关系[J]. 临床荟萃, 2016, 31(4): 433-438. |
[11] | 曹丽叶;张爱民;程树杰;靖立良;张全. 重症急性胰腺炎并发肺损伤大鼠的生存素基因表达及对血红素加氧酶1及细胞凋亡的影响[J]. 临床荟萃, 2014, 29(9): 1019-1021. |
[12] | 常庚;孙晓培;孙大勇;雷阳;李明;韩杰. 肌萎缩侧索硬化患者血清氧化标记物表达水平与病情严重程度的相关性分析[J]. 临床荟萃, 2014, 29(8): 856-857858. |
[13] | 李一梅;刘宽芝. 氧化应激、线粒体功能障碍与2型糖尿病[J]. 临床荟萃, 2014, 29(2): 213-216. |
[14] | 邢邯英;刘敏;野战鹰;张冬会. 正铁血红素改善链脲佐菌素诱导的糖尿病大鼠肝损伤[J]. 临床荟萃, 2014, 29(1): 56-58. |
[15] | 何珂;胡蕴;郭慕红;毛晓明. 促甲状腺激素受体抗体对人肝癌细胞HepG2凋亡和增殖的影响[J]. 临床荟萃, 2014, 29(1): 45-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||