临床荟萃 ›› 2023, Vol. 38 ›› Issue (6): 559-563.doi: 10.3969/j.issn.1004-583X.2023.06.015
收稿日期:
2023-05-18
出版日期:
2023-06-20
发布日期:
2023-08-18
通讯作者:
魏小果,Email:基金资助:
Received:
2023-05-18
Online:
2023-06-20
Published:
2023-08-18
摘要:
代谢相关脂肪性肝病(metabolic associated fatty liver disease, MAFLD)的特征是肝细胞发生脂肪变性的同时合并任何一种代谢性疾病,如超重或肥胖、2型糖尿病、代谢功能障碍等。MAFLD患病率随着肥胖、2型糖尿病等代谢性疾病的流行而增加。肠-肝轴于1998年被首次提出,被认为是维持肝脏代谢和肠道内环境稳态的关键,最近的研究发现它在MAFLD的致病过程中起到重要作用。此外,肠道微生物群作为一个“虚拟的器官”,对维持肠-肝轴的稳态也具有重要的意义。因此,我们将从肠-微生物群-肝轴这一角度出发,探讨三者间的相互作用与MAFLD的相关性,从而为MAFLD的预防控制、早期诊断及治疗等提供一定的参考价值。
中图分类号:
杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563.
[1] |
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209.
doi: S0168-8278(20)30201-4 pmid: 32278004 |
[2] | 薛芮, 范建高. 代谢相关脂肪性肝病新定义的国际专家共识简介[J]. 临床肝胆病杂志, 2020, 36(6): 1224-1227. |
[3] |
Neelis E, de Koning B, Rings E, et al. The gut microbiome in patients with intestinal failure: Current evidence and implications for clinical practice[J]. JPEN J Parenter Enteral Nutr, 2019, 43(2): 194-205.
doi: 10.1002/jpen.1423 pmid: 30070709 |
[4] |
Mu Q, Kirby J, Reilly CM, et al. Leaky gut as a danger signal for autoimmune diseases[J]. Front Immunol, 2017, 8: 598.
doi: 10.3389/fimmu.2017.00598 pmid: 28588585 |
[5] |
Wang R, Tang R, Li B, et al. Gut microbiome, liver immunology, and liver diseases[J]. Cell Mol Immunol, 2021, 18(1): 4-17.
doi: 10.1038/s41423-020-00592-6 pmid: 33318628 |
[6] |
Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: The chicken and the egg[J]. Hepatol Int, 2018, 12(Suppl 1): 24-33.
doi: 10.1007/s12072-017-9798-x pmid: 28550391 |
[7] |
Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863.
doi: S0016-5085(20)34839-3 pmid: 32569766 |
[8] |
Yoon MY, Yoon SS. Disruption of the gut ecosystem by antibiotics[J]. Yonsei Med J, 2018, 59(1): 4-12.
doi: 10.3349/ymj.2018.59.1.4 pmid: 29214770 |
[9] |
Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases[J]. Front Microbiol, 2016, 7: 1081.
doi: 10.3389/fmicb.2016.01081 pmid: 27462309 |
[10] |
Huang C, Zhou Y, Cheng J, et al. Pattern recognition receptors in the development of nonalcoholic fatty liver disease and progression to hepatocellular carcinoma: An emerging therapeutic strategy[J]. Front Endocrinol, 2023, 14: 1145392.
doi: 10.3389/fendo.2023.1145392 URL |
[11] | Torre P, Motta BM, Sciorio R, et al. Inflammation and fibrogenesis in MAFLD: Role of the hepatic immune system[J]. Front Med (Lausanne), 2021, 8: 781567. |
[12] |
Kansakar U, Trimarco V, Mone P, et al. Choline supplements: An update[J]. Front Endocrinol (Lausanne), 2023, 14: 1148166.
doi: 10.3389/fendo.2023.1148166 URL |
[13] |
Zhang L, Xiong L, Fan L, et al. Vascular lipidomics analysis reveales increased levels of phosphocholine and lysophosphocholine in atherosclerotic mice[J]. Nutr Metab (Lond), 2023, 20(1): 1.
doi: 10.1186/s12986-022-00723-y |
[14] |
Li Z, Agellon LB, Vance DE. Phosphatidylcholine homeostasis and liver failure[J]. J Biol Chem, 2005, 280(45): 37798-37802.
doi: 10.1074/jbc.M508575200 pmid: 16144842 |
[15] |
Mehedint MG, Zeisel SH. Choline's role in maintaining liver function: New evidence for epigenetic mechanisms[J]. Curr Opin Clin Nutr Metab Care, 2013, 16(3): 339-345.
doi: 10.1097/MCO.0b013e3283600d46 URL |
[16] | Lin H, Wang L, Liu Z, et al. Hepatic MDM2 causes metabolic associated fatty liver disease by blocking triglyceride-VLDL secretion via apoB degradation[J]. Adv Sci (Weinh), 2022, 9(20): e2200742. |
[17] |
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism[J]. Mol Metab, 2021, 50: 101238.
doi: 10.1016/j.molmet.2021.101238 URL |
[18] |
Li X, Hong J, Wang Y, et al. Trimethylamine-n-oxide pathway: A potential target for the treatment of MAFLD[J]. Front Mol Biosci, 2021, 8: 733507.
doi: 10.3389/fmolb.2021.733507 URL |
[19] |
Chávez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694.
doi: S0016-5085(17)30157-9 pmid: 28214524 |
[20] |
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-573.
doi: 10.1152/ajpgi.00223.2019 URL |
[21] |
Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022, 237: 108238.
doi: 10.1016/j.pharmthera.2022.108238 URL |
[22] |
Paternostro R, Trauner M. Current treatment of non-alcoholic fatty liver disease[J]. J Intern Med, 2022, 292(2): 190-204.
doi: 10.1111/joim.13531 pmid: 35796150 |
[23] |
Mantovani A, Dalbeni A. Treatments for NAFLD: State of Art[J]. Int J Mol Sci, 2021, 22(5):2350.
doi: 10.3390/ijms22052350 URL |
[24] |
Ilyés T, Silaghi CN, Crăciun AM. Diet-related changes of short-chain fatty acids in blood and feces in obesity and metabolic syndrome[J]. Biology, 2022, 11(11):1556.
doi: 10.3390/biology11111556 URL |
[25] |
Cani PD. Human gut microbiome: Hopes, threats and promises[J]. Gut, 2018, 67(9): 1716-1725.
doi: 10.1136/gutjnl-2018-316723 pmid: 29934437 |
[26] |
Li M, Rajani C, Zheng X, et al. The microbial metabolome in metabolic-associated fatty liver disease[J]. J Gastroenterol Hepatol, 2022, 37(1): 15-23.
doi: 10.1111/jgh.v37.1 URL |
[27] |
Christiansen CB, Gabe MBN, Svendsen B, et al. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(1): G53-65.
doi: 10.1152/ajpgi.00346.2017 URL |
[28] |
May KS, den Hartigh LJ. Modulation of adipocyte metabolism by microbial short-chain fatty acids[J]. Nutrients, 2021, 13(10):3666.
doi: 10.3390/nu13103666 URL |
[29] |
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11): 1744-1754.
doi: 10.1136/gutjnl-2014-307913 pmid: 25500202 |
[30] |
Al Mahri S, Malik SS, Al Ibrahim M, et al. Free fatty acid receptors (FFARs) in adipose: Physiological role and therapeutic outlook[J]. Cells, 2022, 11(4):750.
doi: 10.3390/cells11040750 URL |
[31] |
Nakajima A, Nakatani A, Hasegawa S, et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages[J]. PLoS One, 2017, 12(7): e0179696.
doi: 10.1371/journal.pone.0179696 URL |
[32] |
Coppola S, Avagliano C, Calignano A, et al. The protective role of butyrate against obesity and obesity-related diseases[J]. Molecules, 2021, 26(3):682.
doi: 10.3390/molecules26030682 URL |
[33] |
Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells[J]. Cell, 2014, 158(2): 288-299.
doi: S0092-8674(14)00736-3 pmid: 25036629 |
[34] |
Ney LM, Wipplinger M, Grossmann M, et al. Short chain fatty acids: Key regulators of the local and systemic immune response in inflammatory diseases and infections[J]. Open Biol, 2023, 13(3): 230014.
doi: 10.1098/rsob.230014 URL |
[35] |
Chen P, Miyamoto Y, Mazagova M, et al. Microbiota protects mice against acute alcohol-induced liver injury[J]. Alcohol Clin Exp Res, 2015, 39(12): 2313-2323.
doi: 10.1111/acer.12900 pmid: 26556636 |
[36] |
Oh JH, Lee JH, Cho MS, et al. Characterization of gut microbiome in Korean patients with metabolic associated fatty liver disease[J]. Nutrients, 2021, 13(3):1013.
doi: 10.3390/nu13031013 URL |
[37] |
Kong L, Chen J, Ji X, et al. Alcoholic fatty liver disease inhibited the co-expression of Fmo5 and PPARα to activate the NF-κB signaling pathway, thereby reducing liver injury via inducing gut microbiota disturbance[J]. J Exp Clin Cancer Res., 2021, 40(1): 18.
doi: 10.1186/s13046-020-01782-w pmid: 33413501 |
[38] |
Davis BT 4th, Voigt RM, Shaikh M, et al. CREB protein mediates alcohol-induced circadian disruption and intestinal permeability[J]. Alcohol Clin Exp Res, 2017, 41(12): 2007-2014.
doi: 10.1111/acer.13513 pmid: 28960346 |
[39] | Kim DH, Jeong D, Kang IB, et al. Dual function of lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: Direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue[J]. Mol Nutr Food Res, 2017, 61(11). |
[40] |
Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1): 276.
doi: 10.1038/s41420-021-00660-4 pmid: 34611144 |
[41] |
Gao H, Jin Z, Bandyopadhyay G, et al. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis[J]. Cell Metab, 2022, 34(8): 1201-1213.
doi: 10.1016/j.cmet.2022.07.006 pmid: 35921818 |
[42] |
Das NK, Schwartz AJ, Barthel G, et al. Microbial metabolite signaling is required for systemic iron homeostasis[J]. Cell Metab, 2020, 31(1): 115-130.
doi: S1550-4131(19)30560-1 pmid: 31708445 |
[43] |
Liu S, Gao Z, He W, et al. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD[J]. Free Radic Biol Med, 2022, 193(Pt 1): 213-226.
doi: 10.1016/j.freeradbiomed.2022.10.270 URL |
[44] |
Tong J, Lan XT, Zhang Z, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis[J]. Acta Pharmacol Sin, 2023, 44(5):1014-1028.
doi: 10.1038/s41401-022-01010-5 |
[45] |
Yang Y, Chen J, Gao Q, et al. Study on the attenuated effect of ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease[J]. Toxicology, 2020, 445: 152599.
doi: 10.1016/j.tox.2020.152599 URL |
[46] | 周响, 韩宇. 益生菌辅助治疗代谢相关脂肪性肝病的临床观察[J]. 中国微生态学杂志, 2023, 35(1): 78-83. |
[47] |
钟明月, 刘春妍, 颜妍, 等. 乳双歧杆菌V9对高脂饮食诱导的NAFLD大鼠的改善作用[J]. 生物技术通报, 2022, 38(3): 181-187.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0630 |
[48] |
Loman BR, Hernández-Saavedra D, An R, et al. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Nutr Rev, 2018, 76(11): 822-839.
doi: 10.1093/nutrit/nuy031 pmid: 30113661 |
[49] |
Jiang X, Yan C, Zhang H, et al. Oral probiotic expressing human ethanol dehydrogenase attenuates damage caused by acute alcohol consumption in mice[J]. Microbiol Spectr, 2023, 11(3): e0429422.
doi: 10.1128/spectrum.04294-22 URL |
[50] |
Zhi C, Huang J, Wang J, et al. Connection between gut microbiome and the development of obesity[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(11): 1987-1998.
doi: 10.1007/s10096-019-03623-x |
[51] |
An Update on the Efficacy and Functionality of probiotics for the treatment of non-alcoholic fatty liver disease[J]. Engineering, 2021, 7(5): 679-86.
doi: 10.1016/j.eng.2020.01.017 URL |
[52] |
Eickmeier I, Seidel D, Grün JR, et al. Influence of CD8 T cell priming in liver and gut on the enterohepatic circulation[J]. J Hepatol, 2014, 60(6): 1143-1150.
doi: 10.1016/j.jhep.2014.02.011 pmid: 24560659 |
[53] |
Zheng S, Yang W, Yao D, et al. A comparative study on roles of natural killer T cells in two diet-induced non-alcoholic steatohepatitis-related fibrosis in mice[J]. Ann Med, 2022, 54(1): 2233-2245.
doi: 10.1080/07853890.2022.2108894 pmid: 35950602 |
[1] | 王奕涵, 秦旭雁, 韩宣泽, 王樱洁, 高菲菲, 陈春红, 张岭楠, 张芳. 利伐沙班用于HASBLED评分≥3分的高龄非瓣膜性心房颤动患者的有效性和安全性[J]. 临床荟萃, 2024, 39(2): 121-124. |
[2] | 金鑫, 吴金玲, 尹丽丽. 持续性植物状态促醒机制及治疗研究进展[J]. 临床荟萃, 2024, 39(2): 172-176. |
[3] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[4] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[5] | 崔兰丹, 杨春燕. 脓毒症患者甲状腺激素的变化特点及研究进展[J]. 临床荟萃, 2024, 39(1): 70-74. |
[6] | 邹子良, 余海, 王迪, 褚泰运, 李驹, 钱宝堂. 冠状动脉慢性完全闭塞病变介入治疗研究现状[J]. 临床荟萃, 2024, 39(1): 80-83. |
[7] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[8] | 王鑫, 张展, 刘铎, 谢萍. 铁缺乏与肺动脉高压相关性的研究进展[J]. 临床荟萃, 2023, 38(9): 838-844. |
[9] | 陈聪水, 李园, 陈淑芳. 重视儿童胆源性胰腺炎的中西医诊治(附1例分析)[J]. 临床荟萃, 2023, 38(8): 726-730. |
[10] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[11] | 侯有玲, 李奕, 关红玉, 罗红霞. 目标导向液体治疗在脑肿瘤切除术中应用效果的meta分析[J]. 临床荟萃, 2023, 38(8): 686-693. |
[12] | 王玥, 陈辉, 岑奕, 张哲, 张欣, 李宗锡, 陈珍珍, 贾彤彤, 章美玲. 超声引导下侧入路颈脊神经后支三氧联合注射松解治疗颈脊神经后支源性慢性颈肩痛[J]. 临床荟萃, 2023, 38(8): 714-718. |
[13] | 张会, 丁东瑞, 金天然. 新型冠状病毒SARS-CoV-2的相关研究——过去与未来[J]. 临床荟萃, 2023, 38(7): 638-646. |
[14] | 郭文惠, 雷皓月, 潘友卓, 张琦. 质膜膜泡关联蛋白的生物学功能研究进展[J]. 临床荟萃, 2023, 38(7): 647-653. |
[15] | 陈瑾, 吕鸿雁, 刘晗, 刘建宁, 卢佳配, 张金巧. 靶向BCMA的嵌合抗原受体T细胞治疗三重难治性多发性骨髓瘤的研究进展[J]. 临床荟萃, 2023, 38(7): 654-658. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||