临床荟萃 ›› 2023, Vol. 38 ›› Issue (7): 638-646.doi: 10.3969/j.issn.1004-583X.2023.07.010
收稿日期:
2023-05-06
出版日期:
2023-07-20
发布日期:
2023-09-01
通讯作者:
张会
E-mail:935066806@qq.com
Received:
2023-05-06
Online:
2023-07-20
Published:
2023-09-01
摘要:
人类冠状病毒SARS-CoV-2毒株的出现给人类健康带来了威胁,此病毒可导致新型冠状病毒感染(COVID-19)发生,该病以呼吸短促、发烧和肺炎为特征,对于易感人群可能致命。对于SARS-CoV-2的深入研究,包括病毒学、进化过程、细胞传染及人群传播途径、流行病学、临床症状等方面,有助于推动临床检测与治疗方法更新迭代,更有助于解码SARS-CoV-2的进化规律,以预测新的变异毒株,并能及时预防。本文综述了SARS-CoV-2的相关研究,以期对未来研究提供帮助。
中图分类号:
张会, 丁东瑞, 金天然. 新型冠状病毒SARS-CoV-2的相关研究——过去与未来[J]. 临床荟萃, 2023, 38(7): 638-646.
[1] |
Cassandra A, Insha M, Robert M, et al. A Guide to COVID-19: A global pandemic caused by the novel coronavirus SARS-CoV-2[J]. FEBS J, 2020, 287(17): 3633-3650.
doi: 10.1111/febs.v287.17 URL |
[2] |
Li Q, Guan X, Wa P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. N Engl J Med, 2020, 382(13): 1199-1207.
doi: 10.1056/NEJMoa2001316 URL |
[3] |
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nat Microbiol, 2020, 5(4): 536-544.
doi: 10.1038/s41564-020-0695-z pmid: 32123347 |
[4] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273.
doi: 10.1038/s41586-020-2012-7 |
[5] |
Vabret A, Mourez T, Dina J, et al. Human coronavirus NL63, France[J]. Emerg Infect Dis, 2005, 11(8): 1225-1229.
pmid: 16102311 |
[6] |
Kahn JS, McIntosh K. History and recent advances in coronavirus discovery[J]. Pediatr Infect Dis J, 2005, 24(11 Suppl): S223-S227.
doi: 10.1097/01.inf.0000188166.17324.60 pmid: 16378050 |
[7] |
Siddell SG, Anderson R, Cavanagh D, et al. Coronaviridae[J]. Intervirology, 1983, 20(4): 181-189.
pmid: 6654644 |
[8] |
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses[J]. Trends Microbiol, 2016, 24(6): 490-502.
doi: S0966-842X(16)00071-8 pmid: 27012512 |
[9] |
Sharma A, Ahmad FL, Lal SK. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention[J]. Viruses, 2021, 13(2): 202.
doi: 10.3390/v13020202 URL |
[10] |
Masters PS. The molecular biology of coronaviruses[J]. Adv Virus Res, 2006, 66: 193-292.
pmid: 16877062 |
[11] |
Wevers BA, van der HL. Recently discovered human coronaviruses[J]. Clin Lab Med, 2009, 29(4): 715-724.
doi: 10.1016/j.cll.2009.07.007 pmid: 19892230 |
[12] |
Gaunt ER, Hardie A, Claas ECJ, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method[J]. J Clin Microbiol, 2010, 48(8): 2940-2947.
doi: 10.1128/JCM.00636-10 pmid: 20554810 |
[13] | Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019(COVID-19) outbreak-an update on the status[J]. Mil Med Res, 2020, 7(1): 11. |
[14] |
Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2[J]. Natl Sci Rev, 2020, 7(6): 1012-1213.
doi: 10.1093/nsr/nwaa036 pmid: 34676127 |
[15] |
Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number(R0)[J]. Emerg Infect Dis, 2019, 25(1): 1-4.
doi: 10.3201/eid2501.171901 pmid: 30560777 |
[16] |
Killerby ME, Biggs HM, Midgley CM, et al. Middle east respiratory syndrome coronavirus transmission[J]. Emerg Infect Dis, 2020, 26(2): 191-198.
doi: 10.3201/eid2602.190697 pmid: 31961300 |
[17] | Riou J, Althaus CL. Pattern of early humanto-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020[J]. Euro surveill, 2020, 25(4): 2000058. |
[18] |
Zou L, Ruan F, Huang M, et al. SARSCoV-2 viral load in upper respiratory specimens of infected patients[J]. N Engl J Med, 2020, 382(12): 1177-1179.
doi: 10.1056/NEJMc2001737 URL |
[19] |
Poltronieri P, Sun B, Mallardo M. RNA viruses: RNA roles in pathogenesis, coreplication and viral load[J]. Curr Genomics, 2015, 16(5): 327-335.
doi: 10.2174/1389202916666150707160613 pmid: 27047253 |
[20] |
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis[J]. Methods Mol Biol, 2015, 1282: 1-23.
doi: 10.1007/978-1-4939-2438-7_1 pmid: 25720466 |
[21] |
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation[J]. Microbiol Mol Biol Rev, 2008, 72(4): 672-685.
doi: 10.1128/MMBR.00015-08 URL |
[22] |
Astuti I, Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response[J]. Diabetes Metab Syndr, 2020, 14(4): 407-412.
doi: S1871-4021(20)30084-9 pmid: 32335367 |
[23] |
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.
doi: S0092-8674(20)30262-2 pmid: 32155444 |
[24] |
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARSCoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485): 1444-1448.
doi: 10.1126/science.abb2762 URL |
[25] |
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2(previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion[J]. Cell Res, 2020, 30(4): 343-355.
doi: 10.1038/s41422-020-0305-x |
[26] |
Gao J, Lu G, Qi J, et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus[J]. J Virol, 2013, 87(24): 13134-13140.
doi: 10.1128/JVI.02433-13 pmid: 24067982 |
[27] |
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483): 1260-1263.
doi: 10.1126/science.abb2507 pmid: 32075877 |
[28] |
He J, Tao H, Yan Y, et al. Molecular mechanism of evolution and human infection with SARS-CoV-2[J]. Viruses, 2020, 12(4): 428.
doi: 10.3390/v12040428 URL |
[29] |
Wu Y, Long Y, Wang F, et al. Emergence of SARS-CoV-2 Omicron variant and strategies for tackling the infection[J]. Immun Inflamm Dis, 2022, 10(12): e733.
doi: 10.1002/iid3.v10.12 URL |
[30] |
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak[J]. J Autoimmun, 2020, 109: 102433.
doi: 10.1016/j.jaut.2020.102433 URL |
[31] |
Hosseini ES, Kashani NR, Nikzad H, et al. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies[J]. Virology, 2020, 551: 1-9.
doi: 10.1016/j.virol.2020.08.011 URL |
[32] |
Garg S, Kim L, Whiteker M, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019-COVID-NET, 14 states, March 1-30, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69(15): 458-464.
doi: 10.15585/mmwr.mm6915e3 URL |
[33] |
Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis[J]. Lancet Infect Dis, 2020, 20(6): 669-677.
doi: S1473-3099(20)30243-7 pmid: 32240634 |
[34] | 陈炎添, 郭翼华, 苏雪棠. 新型冠状病毒病暴发流行的个人防控[J]. 临床荟萃, 2020, 35(2): 101-105. |
[35] | 尚伟锋, 李维, 周登峰. 新型冠状病毒肺炎临床特征的 Meta分析[J]. 临床荟萃, 2020, 35(4): 293-296. |
[36] | 刘自强, 缪锦峰, 邹琼, 等. 新型冠状病毒肺炎患者发生复合终点事件危险因素的 Meta分析[J]. 临床荟萃, 2020, 35(9): 773-782. |
[37] |
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020, 8(5): 475-481.
doi: 10.1016/S2213-2600(20)30079-5 URL |
[38] |
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy[J]. JAMA, 2020, 323(18): 1775-1776.
doi: 10.1001/jama.2020.4683 pmid: 32203977 |
[39] |
Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis[J]. Int J Infect Dis, 2016, 49: 129-133.
doi: 10.1016/j.ijid.2016.06.015 pmid: 27352628 |
[40] |
Channappannavar R, Fett C, Mack M, et al. Sex-based differences in susceptibility to severe acute respiratory syndrome coronaviruse infection[J]. J Immunol, 2017, 198(10): 4046-4053.
doi: 10.4049/jimmunol.1601896 URL |
[41] |
Dorn AV, Cooney RE, Sabin ML. COVID19 exacerbating inequalities in the US[J]. Lancet, 2020, 395(10232): 1243-1244.
doi: 10.1016/S0140-6736(20)30893-X URL |
[42] |
Ather A, Patel B, Ruparel NB, et al. Coronavirus disease 19 (COVID-19): Implications for clinical dental care[J]. J Endod, 2020, 46(5): 584-595.
doi: S0099-2399(20)30159-X pmid: 32273156 |
[43] |
van DN, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. N Engl J Med, 2020, 382(16): 1564-1567.
doi: 10.1056/NEJMc2004973 URL |
[44] |
Cai J, Sun W, Huang J, et al. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020[J]. Emerg Infect Dis, 2020, 26(6): 1343-1345.
doi: 10.3201/eid2606.200412 pmid: 32163030 |
[45] |
Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia[J]. J Med Virol, 2020, 92(6): 680-682.
doi: 10.1002/jmv.25742 pmid: 32124995 |
[46] |
Chen L, Lou J, Bai Y, et al. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests[J]. Am J Gastroenterol, 2020, 115(5): 790.
doi: 10.14309/ajg.0000000000000610 pmid: 32205644 |
[47] |
Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort: systematic review and meta-analysis[J]. Gastroenterology, 2020, 159(1): 81-95.
doi: S0016-5085(20)30448-0 pmid: 32251668 |
[48] |
Drosten C, Meyer B, Müller MA, et al. Transmission of MERS-coronavirus in household contacts[J]. N Engl J Med, 2014, 371(9): 828-835.
doi: 10.1056/NEJMoa1405858 URL |
[49] |
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study[J]. Lancet, 2020, 395(10223): 507-513.
doi: S0140-6736(20)30211-7 pmid: 32007143 |
[50] |
Hui DS, Azhar EL, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in Wuhan, China[J]. Int J Infect Dis, 2020, 91: 264-266.
doi: 10.1016/j.ijid.2020.01.009 URL |
[51] | 邹语嫣, 冯平勇, 梁康宁, 等. 64例新型冠状病毒肺炎患者的 CT 影像学特征分析[J]. 临床荟萃, 2020, 35(10): 880-884. |
[52] | 张岩, 南成睿, 刘海霞, 等. 新型冠状病毒肺炎 CT 征象再讨论[J]. 临床荟萃, 2020, 35(2): 106-112. |
[53] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
doi: 10.1016/S0140-6736(20)30183-5 URL |
[54] |
Moxley G, Posthuma D, Carlson P, et al. Sexual dimorphism in innate immunity[J]. Arthritis Rheum, 2002, 46(1): 250-258.
doi: 10.1002/(ISSN)1529-0131 URL |
[55] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273.
doi: 10.1038/s41586-020-2012-7 |
[56] | Guan WJ, Zhong NS. Clinical characteristics of 2019 novel coronavirus infection in China reply[J]. N Engl J Med, 2020, 382(19): 1861-1862. |
[57] |
Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-A focused review for clinicians[J]. Clin Microbiol Infect, 2020, 26(7): 842-847.
doi: 10.1016/j.cmi.2020.04.023 URL |
[58] |
Bridge JA. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors[J]. Cancer Cytopathol, 2017, 125(1): 11-19.
doi: 10.1002/cncy.21762 pmid: 27412734 |
[59] |
Wong SCY, Kwong RTS, Wu TC, et al. Risk of nosocomial transmission of coronavirus disease 2019: An experience in a general ward setting in Hong Kong[J]. J Hosp Infect, 2020, 105(2): 119-127.
doi: S0195-6701(20)30174-2 pmid: 32259546 |
[60] | Konrad R, Eberle U, Dangel A, et al. Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV-2 in Bavaria, Germany, February 2020[J]. Euro Surveill, 2020, 25(9): 2000173. |
[61] |
Lorusso A, Calistri P, Mercante MT, et al. A “One-Health” approach for diagnosis and molecular characterization of SARS-CoV-2 in Italy[J]. One Health, 2020, 10: 100135.
doi: 10.1016/j.onehlt.2020.100135 URL |
[62] |
Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential[J]. Biotechniques, 1999, 26(1): 112-125.
pmid: 9894600 |
[63] |
Romsos EL, Vallone PM. Rapid PCR of STR markers: applications to human identification[J]. Forensic Sci Int Genet, 2015, 18: 90-99.
doi: 10.1016/j.fsigen.2015.04.008 URL |
[64] |
Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results[J]. Expert Rev Mol Diagn, 2020, 20(5): 453-454.
doi: 10.1080/14737159.2020.1757437 pmid: 32297805 |
[65] |
Xia T, Li J, Gao J, et al. Small solitary ground-glass nodule on CT as an initial manifestation of coronavirus disease 2019 (COVID-19) pneumonia[J]. Korean J Radiol, 2020, 21(5): 545-549.
doi: 10.3348/kjr.2020.0240 pmid: 32323499 |
[66] | Moore NM, Li H, Schejbal D, et al. Comparison of two commercial molecular tests and a laboratory-developed modification of the CDC 2019- nCOV Reverse Transcriptase PCR assay for the qualitative detection of SARS-CoV-2[J]. J Clin Microbiol, 2020, 58(8): e00938. |
[67] |
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster[J]. Lancet, 2020, 395(10223): 514-523.
doi: 10.1016/S0140-6736(20)30154-9 URL |
[68] | Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J]. Euro Survell, 2020, 25(3): 2000045. |
[69] |
Lei J, Li J, Li X, et al. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia[J]. Radiology, 2020, 295(1): 18.
doi: 10.1148/radiol.2020200236 URL |
[70] |
Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR[J]. Radiology, 2020, 296(2): E115-E117.
doi: 10.1148/radiol.2020200432 URL |
[71] |
Zumla A, Hui DS, Azhar EI, et al. Reducing mortality from 2019-nCoV: Host-directed therapies should be an option[J]. Lancet, 2020, 395(10224): e35-e36.
doi: 10.1016/S0140-6736(20)30305-6 pmid: 32035018 |
[72] |
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses[J]. J Med Virol, 2020, 92(4): 424-432.
doi: 10.1002/jmv.25685 pmid: 31981224 |
[73] |
Raeisossadati MJ, Danesh NM, Borna F, et al. Lateral flow based immunobiosensors for detection of food contaminants[J]. Biosens Bioelectron, 2016, 86: 235-246.
doi: S0956-5663(16)30593-0 pmid: 27376194 |
[74] |
Infantino M, Damiani A, Gobbi FL, et al. Serological assays for SARSCoV-2 infectious disease: benefits, limitations and perspectives[J]. Isr Med Assoc J, 2020, 22(4): 203-210.
pmid: 32286019 |
[75] | Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nat Biotechnol, 2020, 38(7): 807-874. |
[76] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
doi: 10.1126/science.aar6245 pmid: 29449511 |
[77] | Sahin AR, Erdogan A, Agaoglu PM, et al. Novel coronavirus (COVID-19) outbreak: a review of the current literature[J]. EJMO, 2020, 4(1): 1-7. |
[78] |
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area[J]. JAMA, 2020, 323(20): 2052-2059.
doi: 10.1001/jama.2020.6775 pmid: 32320003 |
[79] |
Kupferschmidt K, Cohen J. Race to find COVID-19 treatments acceleratesi[J]. Science, 2020, 367(6485): 1412-1413.
doi: 10.1126/science.367.6485.1412 pmid: 32217705 |
[80] |
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Res, 2020, 30(3): 269-271.
doi: 10.1038/s41422-020-0282-0 |
[81] |
Tchesnokov EP, Feng JY, Porter DP, et al.(2019) Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir[J]. Viruses, 2019, 11(4): 326.
doi: 10.3390/v11040326 URL |
[82] |
Cao B, Wang Y, Wen D, et al. (2020) A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19[J]. N Engl J Med, 2020, 382(19): 1787-1799.
doi: 10.1056/NEJMoa2001282 URL |
[83] |
Cvetkovic RS, Goa KL. Lopinavir/ritonavir: A review of its use in the management of HIV infection[J]. Drugs, 2003, 63(8): 769-802.
doi: 10.2165/00003495-200363080-00004 pmid: 12662125 |
[84] |
Ronnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease[J]. Lupus Sci Med, 2019, 6(1): e000270.
doi: 10.1136/lupus-2018-000270 URL |
[85] |
Sallard E, Lescure FX, Yazdanpanah Y, et al. Type 1 interferons as a potential treatment against COVID-19[J]. Antiviral Res, 2020, 178: 104791.
doi: 10.1016/j.antiviral.2020.104791 URL |
[86] |
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Res, 2020, 30(3): 269-271.
doi: 10.1038/s41422-020-0282-0 |
[87] |
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies[J]. Biosci Trends, 2020, 14(1): 72-73.
doi: 10.5582/bst.2020.01047 pmid: 32074550 |
[88] |
Tchesnokov EP, Feng JY, Porter DP, et al. Mechanism of inhibition of ebola virus RNAdependent RNA polymerase by remdesivir[J]. Viruses, 2019, 11(4): 326.
doi: 10.3390/v11040326 URL |
[89] |
Ito K, Ohmagari N, Mikami A, et al. Major ongoing clinical trials for COVID-19 treatment and studies currently being conducted or scheduled in Japan[J]. Glob Health Med, 2020, 2(2): 96-101.
doi: 10.35772/ghm.2020.01034 pmid: 33330784 |
[90] |
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV[J]. Nat Commun, 2020, 11(1): 222.
doi: 10.1038/s41467-019-13940-6 pmid: 31924756 |
[91] |
Zumla A, Hui DS, Azhar EI, et al. Reducing mortality from 2019-nCoV: Host-directed therapies should be an option[J]. Lancet, 2020, 395(10224): e35-e36.
doi: 10.1016/S0140-6736(20)30305-6 pmid: 32035018 |
[92] |
Abbott TR, Dhamdhere G, Liu Y, et al. Development of CRISPR as antiviral strategy to combat novel coronavirus and influenza[J]. Cell, 2020, 181(4): 865-876.
doi: 10.1016/j.cell.2020.04.020 URL |
[93] |
O’Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems[J]. J Mol Biol, 2019, 431(1): 66-87.
doi: S0022-2836(18)30655-7 pmid: 29940185 |
[94] |
To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study[J]. Lancet Infect Dis, 2020, 20(5): 565-574.
doi: 10.1016/S1473-3099(20)30196-1 URL |
[95] |
Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection[J]. Nat Commun, 2020, 11(1):2251.
doi: 10.1038/s41467-020-16256-y pmid: 32366817 |
[96] |
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci USA, 2020, 117(20): 10970-10975.
doi: 10.1073/pnas.2005615117 pmid: 32350134 |
[97] |
Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: A retrospective cohort study[J]. Lancet Rheumatol, 2020, 2(8): e474-e484.
doi: 10.1016/S2665-9913(20)30173-9 URL |
[98] |
Kapadia SU, Rose JK, Lamirande E, et al. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine[J]. Virology, 2005, 340(2): 174-182.
doi: 10.1016/j.virol.2005.06.016 pmid: 16043204 |
[99] | Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic[J]. Asian Pac J Allergy Immunol, 2020, 38(1): 1-9. |
[100] |
He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine[J]. Biochem Biophys Res Commun, 2004, 324(2): 773-781.
doi: 10.1016/j.bbrc.2004.09.106 URL |
[101] |
Brave A, Ljungberg K, Wahren B, et al. Vaccine delivery methods using viral vectors[J]. Mol Pharm, 2007, 4(1): 18-32.
doi: 10.1021/mp060098+ URL |
[102] |
Callaway E. Why does the Omicron sub-variant spread faster than the original?[J]. Nature, 2022, 602(7898): 556-557.
doi: 10.1038/d41586-022-00471-2 |
[103] |
Adam D. Will Omicron end the pandemic? Here's what experts say[J]. Nature, 2022, 602(7895): 20-21.
doi: 10.1038/d41586-022-00210-7 |
[104] |
Du Z, Hong H, Wang S, et al. Reproduction number of the Omicron variant triples that of the Delta variant[J]. Viruses, 2022, 14(4): 821.
doi: 10.3390/v14040821 URL |
[105] |
Liu Y, Rocklov J. The effective reproduction number for the omicron variant of SARS-CoV-2 is several times relative to Delta[J]. J Travel Med, 2022, 29(3): taac037.
doi: 10.1093/jtm/taac037 URL |
[106] |
Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: A prospective observational study from the ZOE COVID study[J]. Lancet, 2022, 399(10335): 1618-1624.
doi: 10.1016/S0140-6736(22)00327-0 pmid: 35397851 |
[107] |
Kristine AM, Tabitha L, Julia TO, et al. A research and development (R&D) roadmap for broadly protective coronavirus vaccines: A pandemic preparedness strategy[J]. Vaccine, 2023, 41(13): 2101-2112.
doi: 10.1016/j.vaccine.2023.02.032 pmid: 36870874 |
[108] | Grewal R, Kitchen SA, Nguyen L, et al. Effectiveness of a fourth dose of covid-19 mRNA vaccine against the omicron variant among long term care residents in Ontario, Canada: test negative design study[J]. BMJ, 2022, 378: e071502. |
[109] |
Barda N, Dagan N, Cohen C, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study[J]. Lancet, 2021, 398(10316): 2093-2100.
doi: 10.1016/S0140-6736(21)02249-2 pmid: 34756184 |
[110] | Nordstrom P, Ballin M, Nordstrom A. Effectiveness of a fourth dose of mRNA COVID-19 vaccine against all-cause mortality in long-term care facility residents and in the oldest old: a nationwide, retrospective cohort study in Sweden[J]. Lancet Reg Health Eur, 2022, 21: 100466. |
[111] |
Heather LW, Cassandra MB, Isamara NM, et al. The coronavirus recombination pathway[J]. Cell Host Microbe, 2023, 31(6): 874-889.
doi: 10.1016/j.chom.2023.05.003 pmid: 37321171 |
[112] |
Yang CP, Chang CM, Yang CC, et al. Long COVID and long chain fatty acids (LCFAs): Psychoneuro immunity implication of omega-3 LCFAs in delayed consequences of COVID-19[J]. Brain Behav Immun, 2022, 103: 19-27.
doi: 10.1016/j.bbi.2022.04.001 URL |
[1] | 黄赛虎, 龙中洁, 吴水燕, 柏振江. 新冠疫情前后重症肺炎合并急性呼吸衰竭患儿的临床特点与病原学分析[J]. 临床荟萃, 2024, 39(2): 140-143. |
[2] | 崔兰丹, 杨春燕. 脓毒症患者甲状腺激素的变化特点及研究进展[J]. 临床荟萃, 2024, 39(1): 70-74. |
[3] | 位增, 曹灵, 佘敦敏, 刘彦, 王艳, 张真稳. 54例2型糖尿病患者合并新型冠状病毒感染的死亡原因分析[J]. 临床荟萃, 2023, 38(9): 806-812. |
[4] | 黄华艳, 林春光, 吴昌儒, 陈永东, 黄焕谋. 新型冠状病毒Omicron变异株与Delta变异株感染患者的临床特征分析[J]. 临床荟萃, 2023, 38(7): 600-605. |
[5] | 倪艺芸, 刘彬, 梁琪, 李晓凤. 白细胞介素6和C反应蛋白预测新型冠状病毒肺炎严重程度的meta分析[J]. 临床荟萃, 2023, 38(6): 493-499. |
[6] | 周琪, 朱燕宾, 栗维宁, 李叔寒, 张秀果. 58例术前发生院内急性脑梗死的老年骨折患者流行病学特征[J]. 临床荟萃, 2023, 38(5): 438-443. |
[7] | 张大炜, 李鑫, 孙贵凤. 2021年成都地区肺炎支原体感染流行病学分析[J]. 临床荟萃, 2023, 38(3): 237-240. |
[8] | 翟华珍, 李凌翔, 林秋满, 赖颖瑜, 杨心怡, 邓敏. 重症急性胰腺炎治疗及营养支持的研究进展[J]. 临床荟萃, 2023, 38(12): 1135-1139. |
[9] | 吴昊天, 范玉雯, 张晓岚. 《中国慢性胃炎诊治指南(2022年,上海)》解读[J]. 临床荟萃, 2023, 38(10): 926-930. |
[10] | 乔庆哲, 张新, 贺向红, 席素雅. 河北省涞源县40岁以上人群肺功能流行病学调查[J]. 临床荟萃, 2022, 37(7): 627-630. |
[11] | 郭茹, 刘芮宏, 蔺雪峰, 韩轩茂, 张柱, 陈瑞英. 危重型新型冠状病毒肺炎患者心肌肌钙蛋白及D-二聚体水平与病死率的Meta分析[J]. 临床荟萃, 2022, 37(4): 293-298. |
[12] | 黄华艳, 林春光, 陈永东, 曾其毅, 吴昌儒. 新型冠状病毒Delta变异株感染同船海员的临床特点分析[J]. 临床荟萃, 2022, 37(4): 311-314. |
[13] | 王晓庆, 郭毅佳, 唐镱方, 唐琴, 杨杰. 卒中后不同降压方案的有效性及安全性:系统评价及meta分析[J]. 临床荟萃, 2022, 37(3): 197-203. |
[14] | 冯媛, 李萍, 郑佳佳, 臧佳佳, 平芬. 新冠疫情背景下哮喘患者心理状态及影响因素[J]. 临床荟萃, 2022, 37(3): 275-278. |
[15] | 郭文秀, 王海龙, 王斗斗. 心肌型脂肪酸结合蛋白与新型冠状病毒肺炎轻重症的相关性[J]. 临床荟萃, 2022, 37(12): 1104-1107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||