临床荟萃 ›› 2023, Vol. 38 ›› Issue (7): 647-653.doi: 10.3969/j.issn.1004-583X.2023.07.011
收稿日期:
2023-03-18
出版日期:
2023-07-20
发布日期:
2023-09-01
通讯作者:
张琦
E-mail:15293222012@163.com
基金资助:
Received:
2023-03-18
Online:
2023-07-20
Published:
2023-09-01
摘要:
内皮细胞包含几个特殊的纳米级结构域,例如小窝、窗孔和跨内皮通道,它们可以调节信号传导和内皮通透性。窗孔覆盖着一层薄的纤维隔膜,该隔膜由聚集形成筛板的质膜膜泡关联蛋白(plasma membrane vesicle-associated proteins,PLVAP)组成。PLVAP蛋白已被证明是形成内皮细胞隔膜所必需的。PLVAP是一种内皮细胞特异性蛋白,形成气孔隔膜和窗孔隔膜,调节血管通透性、白细胞迁移和血管生成。小鼠PLVAP缺失会导致体内平衡紊乱而过早死亡。以往研究表明,PLVAP与多种疾病的发生均有关,其潜在的临床应用价值亟待进一步探索。 本文就PLVAP的结构、功能、疾病发展及其治疗靶点的作用作一综述。
中图分类号:
郭文惠, 雷皓月, 潘友卓, 张琦. 质膜膜泡关联蛋白的生物学功能研究进展[J]. 临床荟萃, 2023, 38(7): 647-653.
疾病 | PLVAP水平 | 可能的机制 |
---|---|---|
癌症[ | 升高 | 血管生成、通透性增加 |
急性脑缺血病[ | 升高 | 血管生成、通透性增加 |
脂肪型肝炎[ | 降低 | 窗孔调节、基底膜形成 |
蛋白丢失性肠病[ | 突变 | 渗透性增加 |
糖尿病性视网膜病变[ | 升高 | 血管生成、通透性增加 |
表1 PLVAP与相关疾病
疾病 | PLVAP水平 | 可能的机制 |
---|---|---|
癌症[ | 升高 | 血管生成、通透性增加 |
急性脑缺血病[ | 升高 | 血管生成、通透性增加 |
脂肪型肝炎[ | 降低 | 窗孔调节、基底膜形成 |
蛋白丢失性肠病[ | 突变 | 渗透性增加 |
糖尿病性视网膜病变[ | 升高 | 血管生成、通透性增加 |
疾病 | 手段 | 病理机制 |
---|---|---|
肝癌[ | 重组单克隆抗PLVAP Fab-TF | 抗血管生成 |
胆管癌[ | 增加内皮细胞血管 生成 | |
胰腺癌[ | shRAN PLVAP | 抗血管生成 |
恶性胶质瘤[ | 抗血管生成、免疫细胞的浸润 | |
糖尿病视网膜 病变[ | 靶向VEGFA-PLVAP | 抗血管生成、保护血视网膜屏障 |
肺部疾病[ | 脂质纳米粒 | 维持血管完整性 |
病毒性脑炎[ | PLVAP基因沉默 | 控制日本脑炎病毒在神经元的繁殖 |
表2 PLVAP作为疾病治疗的靶点
疾病 | 手段 | 病理机制 |
---|---|---|
肝癌[ | 重组单克隆抗PLVAP Fab-TF | 抗血管生成 |
胆管癌[ | 增加内皮细胞血管 生成 | |
胰腺癌[ | shRAN PLVAP | 抗血管生成 |
恶性胶质瘤[ | 抗血管生成、免疫细胞的浸润 | |
糖尿病视网膜 病变[ | 靶向VEGFA-PLVAP | 抗血管生成、保护血视网膜屏障 |
肺部疾病[ | 脂质纳米粒 | 维持血管完整性 |
病毒性脑炎[ | PLVAP基因沉默 | 控制日本脑炎病毒在神经元的繁殖 |
[1] |
Eelen G, Treps L, Li X, et al. Basic and therapeutic aspects of angiogenesis updated[J]. Circ Res, 2020, 127(2):310-329.
doi: 10.1161/CIRCRESAHA.120.316851 pmid: 32833569 |
[2] |
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells[J]. Nature, 2016, 529(7586):316-325.
doi: 10.1038/nature17040 |
[3] |
Nourshargh S, Alon R. Leukocyte migration into inflamed tissues[J]. Immunity, 2014, 41(5):694-707.
doi: 10.1016/j.immuni.2014.10.008 pmid: 25517612 |
[4] |
Stan RV. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis[J]. J Cell Mol Med, 2007, 11(4):621-643.
doi: 10.1111/j.1582-4934.2007.00075.x pmid: 17760829 |
[5] |
Stan RV, Tse D, Deharvengt SJ, et al. The diaphragms of fenestrated endothelia: Gatekeepers of vascular permeability and blood composition[J]. Dev Cell, 2012, 23(6):1203-1218.
doi: 10.1016/j.devcel.2012.11.003 pmid: 23237953 |
[6] |
Herrnberger L, Seitz R, Kuespert S, et al. Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice[J]. Histochem Cell Biol, 2012, 138(5):709-724.
doi: 10.1007/s00418-012-0987-3 pmid: 22782339 |
[7] |
Rantakari P, Auvinen K, Jäppinen N, et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes[J]. Nat Immunol, 2015, 16(4):386-396.
doi: 10.1038/ni.3101 pmid: 25665101 |
[8] |
Liu Y, Carson-Walter EB, Cooper A, et al. Vascular gene expression patterns are conserved in primary and metastatic brain tumors[J]. J Neurooncol, 2010, 99(1):13-24.
doi: 10.1007/s11060-009-0105-0 URL |
[9] |
Keuschnigg J, Henttinen T, Auvinen K, et al. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule[J]. Blood, 2009, 114(2): 478-484.
doi: 10.1182/blood-2008-11-188763 pmid: 19420356 |
[10] | Minshall RD, Malik AB. Transport across the endothelium: Regulation of endothelial permeability[J]. Handb Exp Pharmacol, 2006, (176 Pt 1):107-144. |
[11] | Wen Y, Wang Y, Huang Y, et al. PLVAP protein expression correlated with microbial composition, clinicopathological features, and prognosis of patients with stomach adenocarcinoma[J]. J Cancer Res Clin Oncol, 2023, 99(1): 13-24. |
[12] |
Terkelsen MK, Bendixen SM, Hansen D, et al. Transcriptional dynamics of hepatic sinusoid-associated cells after liver injury[J]. Hepatology, 2020, 72(6): 2119-2133.
doi: 10.1002/hep.31215 URL |
[13] |
Gorukmez O, Gorukmez O, Demiroren K. Novel PLVAP mutation in protein losing enteropathy[J]. Fetal Pediatr Pathol, 2019, 38(6):534-537.
doi: 10.1080/15513815.2019.1627624 pmid: 31215290 |
[14] |
Laksitorini MD, Yathindranath V, Xiong W, et al. Impact of Wnt/β-catenin signaling on ethanol-induced changes in brain endothelial cell permeability[J]. J Neurochem, 2021, 157(4):1118-1137.
doi: 10.1111/jnc.v157.4 URL |
[15] |
Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia[J]. Proc Natl Acad Sci U S A, 1999, 96(23):13203-13207.
doi: 10.1073/pnas.96.23.13203 URL |
[16] |
Ghitescu LD, Crine P, Jacobson BS. Antibodies specific to the plasma membrane of rat lung microvascular endothelium[J]. Exp Cell Res, 1997, 232(1):47-55.
pmid: 9141620 |
[17] |
Stan RV. Structure of caveolae[J]. Biochim Biophys Acta, 2005, 1746(3):334-348.
pmid: 16214243 |
[18] |
Hnasko R, Ben-Jonathan N. Developmental regulation of PV-1 in rat lung: Association with the nuclear envelope and limited colocalization with Cav-1[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(2):L275-284.
doi: 10.1152/ajplung.00236.2004 URL |
[19] |
Stan RV, Ghitescu L, Jacobson BS, et al. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein[J]. J Cell Biol, 1999, 145(6):1189-1198.
pmid: 10366592 |
[20] |
Strickland LA, Jubb AM, Hongo JA, et al. Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF)[J]. J Pathol, 2005, 206(4): 466-475.
pmid: 15971170 |
[21] |
Hofman P, Blaauwgeers HG, Vrensen GF, et al. Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys[J]. Ophthalmic Res, 2001, 33(3):156-162.
pmid: 11340407 |
[22] |
Hnasko R, Frank P, Ben-Jonathan N, et al. PV-1 is negatively regulated by VEGF in the lung of caveolin-1, but not caveolin-2, null mice[J]. Cell cycle (Georgetown, Tex), 2006, 5(17):2012-2020.
doi: 10.4161/cc.5.17.3216 URL |
[23] |
Denzer L, Muranyi W, Schroten H, et al. The role of PLVAP in endothelial cells[J]. Cell Tissue Res., 2023, 392(2): 393-412.
doi: 10.1007/s00441-023-03741-1 |
[24] |
Hamilton BJ, Tse D, Stan RV. Phorbol esters induce PLVAP expression via VEGF and additional secreted molecules in MEK1-dependent and p38, JNK and PI3K/Akt-independent manner[J]. J Cell Mol Med, 2019, 23(2):920-933.
doi: 10.1111/jcmm.13993 pmid: 30394679 |
[25] |
He L, Lu H, Ji X, et al. Stimulatory G-protein α subunit modulates endothelial cell permeability through regulation of plasmalemma vesicle-associated protein[J]. Front Pharmacol, 2022, 13:941064.
doi: 10.3389/fphar.2022.941064 URL |
[26] |
Bodor C, Nagy JP, Végh B, et al. Angiotensin II increases the permeability and PV-1 expression of endothelial cells[J]. Am J Physiol Cell Physiol, 2012, 302(1):C267-276.
doi: 10.1152/ajpcell.00138.2011 URL |
[27] |
Farber G, Hurtado R, Loh S, et al. Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling[J]. Angiogenesis, 2018, 21(2):335-347.
doi: 10.1007/s10456-018-9599-4 pmid: 29397483 |
[28] |
Wasserman SM, Mehraban F, Komuves LG, et al. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress[J]. Physiol Genomics, 2002, 12(1):13-23.
doi: 10.1152/physiolgenomics.00102.2002 pmid: 12419857 |
[29] |
Stan RV, Tkachenko E, Niesman IR. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms[J]. Mol Biol Cell, 2004, 15(8): 3615-3630.
pmid: 15155804 |
[30] |
Ioannidou S, Deinhardt K, Miotla J, et al. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis[J]. Proc Natl Acad Sci U S A, 2006, 103(45):16770-16775.
doi: 10.1073/pnas.0603501103 URL |
[31] |
Zhao Y, Zhao J. PV1: Gatekeeper of endothelial permeability[J]. Am J Respir Cell Mol Biol, 2020, 63(4):413-414.
doi: 10.1165/rcmb.2020-0294ED URL |
[32] |
Jones JH, Friedrich E, Hong Z, et al. PV1 in caveolae controls lung endothelial permeability[J]. Am J Respir Cell Mol Biol, 2020, 63(4):531-539.
doi: 10.1165/rcmb.2020-0102OC URL |
[33] |
Elgueta R, Tse D, Deharvengt SJ, et al. Endothelial plasmalemma vesicle-associated protein regulates the homeostasis of splenic immature B cells and B-1 B cells[J]. J Immunol, 2016, 197(10):3970-3981.
pmid: 27742829 |
[34] |
Madden SL, Cook BP, Nacht M, et al. Vascular gene expression in nonneoplastic and malignant brain[J]. Am J Pathol, 2004, 165(2):601-608.
pmid: 15277233 |
[35] |
Carson-Walter EB, Hampton J, Shue E, et al. Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis[J]. Clin Cancer Res, 2005, 11(21):7643-7650.
pmid: 16278383 |
[36] |
Ma K, Chen X, Zhao X, et al. PLVAP is associated with glioma-associated malignant processes and immunosuppressive cell infiltration as a promising marker for prognosis[J]. Heliyon, 2022, 8(8):e10298.
doi: 10.1016/j.heliyon.2022.e10298 URL |
[37] |
Wang Y, Yu H, Xie X, et al. Plasmalemma vesicle-associated protein promotes angiogenesis in cholangiocarcinoma via the DKK1/CKAP4/PI3K signaling pathway[J]. Oncogene, 2021, 40(25):4324-4337.
doi: 10.1038/s41388-021-01844-z pmid: 34079085 |
[38] | 熊志勇, 姚志成, 胡昆鹏, 等. PLVAP基因在肝癌组织的表达及临床意义[J]. 中华肝脏外科手术学电子杂志, 2018, 7(6):511-515. |
[39] |
Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell, 2021, 39(5):708-724.
doi: 10.1016/j.ccell.2021.03.004 pmid: 33798472 |
[40] |
Deharvengt SJ, Tse D, Sideleva O, et al. PV1 down-regulation via shRNA inhibits the growth of pancreatic adenocarcinoma xenografts[J]. J Cell Mol Med, 2012, 16(11):2690-2700.
doi: 10.1111/j.1582-4934.2012.01587.x pmid: 22568538 |
[41] |
Tichauer KM, Deharvengt SJ, Samkoe KS, et al. Tumor endothelial marker imaging in melanomas using dual-tracer fluorescence molecular imaging[J]. Mol Imaging Biol, 2014, 16(3): 372-382.
doi: 10.1007/s11307-013-0692-1 pmid: 24217944 |
[42] |
Boyé K, Geraldo LH, Furtado J, et al. Endothelial Unc5B controls blood-brain barrier integrity[J]. Nat Commun, 2022, 13(1):1169.
doi: 10.1038/s41467-022-28785-9 pmid: 35246514 |
[43] |
Shue EH, Carson-Walter EB, Liu Y, et al. Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood-brain barrier disruption in rodent models[J]. BMC Neurosci, 2008, 9:29.
doi: 10.1186/1471-2202-9-29 pmid: 18302779 |
[44] |
Herrnberger L, Hennig R, Kremer W, et al. Formation of fenestrae in murine liver sinusoids depends on plasmalemma vesicle-associated protein and is required for lipoprotein passage[J]. PLoS One, 2014, 9(12):e115005.
doi: 10.1371/journal.pone.0115005 URL |
[45] |
Desroches-Castan A, Tillet E, Ricard N, et al. Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis[J]. Hepatology, 2019, 70(4):1392-1408.
doi: 10.1002/hep.30655 pmid: 30964206 |
[46] |
Elkadri A, Thoeni C, Deharvengt SJ, et al. Mutations in plasmalemma vesicle associated protein result in sieving protein-losing enteropathy characterized by hypoproteinemia, hypoalbuminemia, and hypertriglyceridemia[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(4):381-394.
pmid: 26207260 |
[47] |
Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic ma cular edema and other pathological conditions[J]. Prog Retin Eye Res, 2013, 34:19-48.
doi: 10.1016/j.preteyeres.2013.02.001 URL |
[48] | Qaum T, Xu Q, Joussen AM, et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes[J]. Invest Ophthalmol Vis Sci, 2001, 42(10):2408-2413. |
[49] |
Witmer AN, Vrensen GF, Van Noorden CJ, et al. Vascular endothelial growth factors and angiogenesis in eye disease[J]. Prog Retin Eye Res, 2003, 22(1):1-29.
doi: 10.1016/s1350-9462(02)00043-5 pmid: 12597922 |
[50] |
Klaassen I, Hughes JM, Vogels IM, et al. Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes[J]. Exp Eye Res, 2009, 89(1):4-15.
doi: 10.1016/j.exer.2009.01.006 pmid: 19284967 |
[51] |
Wisniewska-Kruk J, Klaassen I, Vogels IM, et al. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy[J]. Exp Eye Res, 2014, 122:123-131.
doi: 10.1016/j.exer.2014.03.005 pmid: 24703908 |
[52] |
Wisniewska-Kruk J, van der Wijk AE, van Veen HA, et al. Plasmalemma vesicle-associated protein has a key role in blood-retinal barrier loss[J]. Am J Pathol, 2016, 186(4):1044-1054.
doi: 10.1016/j.ajpath.2015.11.019 pmid: 26878208 |
[53] |
Wang Y, Cheng T, Chen T, et al. Plasmalemmal vesicle associated protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma[J]. BMC cancer, 2014, 14:815.
doi: 10.1186/1471-2407-14-815 URL |
[54] |
Bosma EK, Schlingemann RO, et al. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: Potential novel therapeutic target for cerebral edema and diabetic macular edema[J]. Fluids Barriers Cns, 2018, 15(1):24.
doi: 10.1186/s12987-018-0109-2 pmid: 30231925 |
[55] |
Li Q, Chan C, Peterson N, et al. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs[J]. ACS Chem Biol, 2020, 15(4):830-836.
doi: 10.1021/acschembio.0c00003 pmid: 32155049 |
[56] |
Marchetti GM, Burwell TJ, Peterson NC et al. Targeted drug delivery via caveolae-associated protein PV1 improves lung fibrosis[J]. Commun Biol, 2019, 2: 92.
doi: 10.1038/s42003-019-0337-2 pmid: 30854484 |
[57] |
Mukherjee S, Sengupta N, Chaudhuri A, et al. PLVAP and GKN3 are two critical host cell receptors which facilitate Japanese encephalitis virus entry into neurons[J]. Sci Rep, 2018, 8(1):11784.
doi: 10.1038/s41598-018-30054-z pmid: 30082709 |
[1] | 王壮壮, 刘彦廷, 田春雷, 任欢, 艾文兵. 长链非编码RNA在胶质瘤中的研究进展[J]. 临床荟萃, 2023, 38(11): 1053-1056. |
[2] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[3] | 叶倩, 凌志, 刘申香, 路国涛, 殷旭东. 糖皮质激素对晚期肿瘤患者免疫疗效影响的Meta分析[J]. 临床荟萃, 2022, 37(7): 591-598. |
[4] | 周艺璇, 林伟钊, 李瑞满. 同型半胱氨酸与妊娠期高血压疾病相关性的meta分析[J]. 临床荟萃, 2021, 36(2): 101-106. |
[5] | 邓余杰, 范林清, 张涛. 脂蛋白相关磷脂酶A2与中老年高血压患者颈动脉不稳定斑块的关系[J]. 临床荟萃, 2021, 36(2): 112-116. |
[6] | 钱正瑶, 李广平, 李娇, 梁雪, 徐昭, 陈艳, 赵辉. 氧化型低密度脂蛋白诱导内皮细胞凋亡中前蛋白转化酶枯草溶菌素9与炎症因子的关系[J]. 临床荟萃, 2016, 31(4): 396-402. |
[7] | 李秀武;刘建强;田二朋;王慧平;刘晓鹏;高莉. 不同热变温度对新生儿脐带血中超氧化物歧化酶提取的影响[J]. 临床荟萃, 2014, 29(11): 1294-1296. |
[8] | 姚晓玲;刘建军;杨秀花;王杰超;刘玮琳;苌翠粉;商素亮. 银杏叶提取物对人脐静脉内皮细胞凋亡的影响[J]. 临床荟萃, 2014, 29(9): 1022-1024. |
[9] | 安盟盟;宋海燕. 富含半胱氨酸的酸性分泌蛋白的生物学功能及临床进展[J]. 临床荟萃, 2014, 29(9): 1078-1081. |
[10] | 唐暎;刘为群;任建如;吴阳. 男性正常甲状腺功能促甲状腺激素水平与血脂异常的关系[J]. 临床荟萃, 2014, 29(4): 389-391. |
[11] | 陈琳;喻明. 咖啡因对棕榈酸作用下β细胞增殖和凋亡影响[J]. 临床荟萃, 2013, 28(7): 772-774782. |
[12] | 黄火高;尚毅;尚健;姚合斌;郭启煜. 国人异位促肾上腺皮质激素综合征病因研究[J]. 临床荟萃, 2013, 28(7): 783-785. |
[13] | 李俊国;寸向农;杨开明. Wnt/β-catenin信号通路对肿瘤双相调控的研究进展[J]. 临床荟萃, 2012, 27(3): 270-272. |
[14] | 张慧敏;黄鹏;刘丽;彭春霞;彭定琼;鲁炳怀. 老年危重症患者血清甲状腺激素水平的变化与预后的关系[J]. 临床荟萃, 2011, 26(3): 212-214. |
[15] | 龙丽;单可人;赵艳;李毅;何燕;吴昌学;齐晓岚;谢渊;张婷;官志忠;任锡麟. 荔波瑶族、汉族雌激素受体α基因多态性与乙型肝炎病毒感染关系的研究[J]. 临床荟萃, 2009, 24(15): 1305-1308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||