临床荟萃 ›› 2024, Vol. 39 ›› Issue (2): 177-182.doi: 10.3969/j.issn.1004-583X.2024.02.016
收稿日期:
2023-06-01
出版日期:
2024-02-20
发布日期:
2024-04-18
通讯作者:
李红山
E-mail:lihongshan_1982@126.com
基金资助:
Received:
2023-06-01
Online:
2024-02-20
Published:
2024-04-18
摘要:
自身免疫性肝炎(autoimmune hepatitis, AIH)是一种免疫介导的肝脏实质炎性疾病,目前治疗手段尚有限,且病因和发病机制仍未明确。阐明AIH的发病机制对其防治至关重要。随着“肠-肝轴”学说提出,肠道菌群作为“肠-肝轴”的一个重要变量,被认为在AIH发生和进展中发挥着综合作用。近年来随着分子生物学的发展,免疫调节在AIH中的作用也得到越来越多研究的关注。本文从肠道菌群与免疫调节之间的相互作用方面阐述了AIH的最新研究进展,为进一步阐明AIH的机制提供了新思路。
中图分类号:
张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182.
[1] |
Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18018.
doi: 10.1038/nrdp.2018.18 pmid: 29644995 |
[2] |
Liberal R, De Boer YS, Heneghan MA. Established and novel therapeutic options for autoimmune hepatitis[J]. Lancet Gastroenterol Hepatol, 2021, 6(4): 315-326.
doi: 10.1016/S2468-1253(20)30328-9 URL |
[3] |
Cheng Z, Yang L, Chu H. The gut microbiota: A novel player in autoimmune hepatitis[J]. Front Cell Infect Microbiol, 2022, 12: 947382.
doi: 10.3389/fcimb.2022.947382 URL |
[4] |
Wei Y, Li Y, Yan L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69(3): 569-577.
doi: 10.1136/gutjnl-2018-317836 pmid: 31201284 |
[5] |
Albillos A, De Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.
doi: S0168-8278(19)30604-X pmid: 31622696 |
[6] |
Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature[J]. Int J Mol Sci, 2019, 20(2):395.
doi: 10.3390/ijms20020395 URL |
[7] |
Medina-Cleghorn D, Nomura DK. Exploring metabolic pathways and regulation through functional chemoproteomic and metabolomic platforms[J]. Chem Biol, 2014, 21(9): 1171-1184.
doi: 10.1016/j.chembiol.2014.07.007 URL |
[8] |
Luan J, Zhang X, Wang S, et al. NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated conA-induced hepatitis[J]. Front Immunol, 2018, 9: 758.
doi: 10.3389/fimmu.2018.00758 pmid: 29692782 |
[9] |
Vuerich M, Wang N, Kalbasi A, et al. Dysfunctional immune regulation in autoimmune hepatitis: From pathogenesis to novel therapies[J]. Front Immunol, 2021, 12: 746436.
doi: 10.3389/fimmu.2021.746436 URL |
[10] |
Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38: 23-48.
doi: 10.1146/annurev-immunol-070119-115104 pmid: 32340570 |
[11] |
Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease[J]. Trends Mol Med, 2016, 22(6): 458-478.
doi: S1471-4914(16)30007-7 pmid: 27178527 |
[12] |
Rajili'c-Stojanovi'c M, De Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiol Rev, 2014, 38(5): 996-1047.
doi: 10.1111/1574-6976.12075 URL |
[13] |
Terjung B, Söhne J, Lechtenberg B, et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ[J]. Gut, 2010, 59(6): 808-816.
doi: 10.1136/gut.2008.157818 pmid: 19951907 |
[14] |
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.
doi: 10.1038/nrgastro.2017.119 pmid: 29018272 |
[15] |
Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: A comprehensive review[J]. J Autoimmun, 2013, 46: 97-111.
doi: 10.1016/j.jaut.2013.06.013 pmid: 23891169 |
[16] |
Liwinski T, Casar C, Ruehlemann MC, et al. A disease-specific decline of the relative abundance of bifidobacterium in patients with autoimmune hepatitis[J]. Aliment Pharmacol Ther, 2020, 51(12): 1417-1428.
doi: 10.1111/apt.v51.12 URL |
[17] |
Wang H, Banerjee N, Liang Y, et al. Gut microbiome-host interactions in driving environmental pollutant trichloroethene-mediated autoimmunity[J]. Toxicol Appl Pharmacol, 2021, 424: 115597.
doi: 10.1016/j.taap.2021.115597 URL |
[18] |
Yuksel M, Wang Y, Tai N, et al. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation[J]. Hepatology, 2015, 62(5): 1536-1550.
doi: 10.1002/hep.27998 URL |
[19] |
Elsherbiny NM, Rammadan M, Hassan EA, et al. Autoimmune hepatitis: Shifts in gut microbiota and metabolic pathways among egyptian patients[J]. Microorganisms, 2020, 8(7):1011.
doi: 10.3390/microorganisms8071011 URL |
[20] |
Lou J, Jiang Y, Rao B, et al. Fecal microbiomes distinguish patients with autoimmune hepatitis from healthy individuals[J]. Front Cell Infect Microbiol, 2020, 10: 342.
doi: 10.3389/fcimb.2020.00342 URL |
[21] |
Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric crohn's disease[J]. Cell Host Microbe, 2015, 18(4): 489-500.
doi: 10.1016/j.chom.2015.09.008 pmid: 26468751 |
[22] |
Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin regIIIgamma promotes the spatial segregation of microbiota and host in the intestine[J]. Science, 2011, 334(6053): 255-258.
doi: 10.1126/science.1209791 pmid: 21998396 |
[23] |
Bouskra D, Brézillon C, Bérard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis[J]. Nature, 2008, 456(7221): 507-510.
doi: 10.1038/nature07450 |
[24] |
Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406.e1-10.
doi: 10.1053/j.gastro.2013.04.056 pmid: 23665276 |
[25] |
Thangaraju M, Cresci GA, Liu K, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon[J]. Cancer Res, 2009, 69(7): 2826-2832.
doi: 10.1158/0008-5472.CAN-08-4466 pmid: 19276343 |
[26] |
Su ZQ, Mo ZZ, Liao JB, et al. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress[J]. Int Immunopharmacol, 2014, 22(2): 371-378.
doi: 10.1016/j.intimp.2014.06.043 URL |
[27] |
Pradere JP, Troeger JS, Dapito DH, et al. Toll-like receptor 4 and hepatic fibrogenesis[J]. Semin Liver Dis, 2010, 30(3): 232-244.
doi: 10.1055/s-0030-1255353 URL |
[28] |
Guo S, Nighot M, Al-Sadi R, et al. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88[J]. J Immunol, 2015, 195(10): 4999-5010.
doi: 10.4049/jimmunol.1402598 pmid: 26466961 |
[29] |
Kremer M, Hines IN, Milton RJ, et al. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis[J]. Hepatology, 2006, 44(1): 216-227.
pmid: 16799967 |
[30] |
Zhou YQ, Weng XF, Dou R, et al. Betulin from hedyotis hedyotidea ameliorates concanavalin A-induced and T cell-mediated autoimmune hepatitis in mice[J]. Acta Pharmacol Sin, 2017, 38(2): 201-210.
doi: 10.1038/aps.2016.102 |
[31] |
Henao-Mejia J, Elinav E, Thaiss CA, et al. Inflammasomes and metabolic disease[J]. Annu Rev Physiol, 2014, 76: 57-78.
doi: 10.1146/annurev-physiol-021113-170324 pmid: 24274736 |
[32] |
Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology[J]. Cell Mol Immunol, 2016, 13(3): 337-346.
doi: 10.1038/cmi.2015.115 pmid: 26972772 |
[33] |
Xue R, Zhang H, Pan J, et al. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis[J]. Front Immunol, 2018, 9: 2398.
doi: 10.3389/fimmu.2018.02398 pmid: 30386344 |
[34] |
Biagioli M, Carino A, Fiorucci C, et al. GPBAR1 functions as gatekeeper for liver NKT cells and provides counterregulatory signals in mouse models of immune-mediated hepatitis[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(3): 447-473.
doi: S2352-345X(19)30081-5 pmid: 31226434 |
[35] |
Jaruga B, Hong F, Sun R, et al. Crucial role of IL-4/STAT6 in T cell-mediated hepatitis: Up-regulating eotaxins and IL-5 and recruiting leukocytes[J]. J Immunol, 2003, 171(6): 3233-3244.
pmid: 12960353 |
[36] |
Harada K, Isse K, Nakanuma Y. Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction[J]. J Clin Pathol, 2006, 59(2): 184-190.
pmid: 16443736 |
[37] |
Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes[J]. Nature, 2008, 455(7216): 1109-1113.
doi: 10.1038/nature07336 |
[38] |
Frantz AL, Rogier EW, Weber CR, et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides[J]. Mucosal Immunol, 2012, 5(5): 501-512.
doi: 10.1038/mi.2012.23 pmid: 22491177 |
[39] |
Petnicki-Ocwieja T, Hrncir T, Liu YJ, et al. Nod2 is required for the regulation of commensal microbiota in the intestine[J]. Proc Natl Acad Sci U S A, 2009, 106(37): 15813-15818.
doi: 10.1073/pnas.0907722106 URL |
[40] |
Rehman A, Sina C, Gavrilova O, et al. Nod2 is essential for temporal development of intestinal microbial communities[J]. Gut, 2011, 60(10): 1354-1362.
doi: 10.1136/gut.2010.216259 pmid: 21421666 |
[41] |
Zhao Y, Alonso C, Ballester I, et al. Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1[J]. Inflamm Bowel Dis, 2012, 18(4): 603-612.
doi: 10.1002/ibd.21851 pmid: 21887730 |
[42] |
Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis[J]. World J Gastroenterol, 2016, 22(42): 9257-9278.
doi: 10.3748/wjg.v22.i42.9257 URL |
[43] |
Mizuhara H, O'neill E, Seki N, et al. T cell activation-associated hepatic injury: Mediation by tumor necrosis factors and protection by interleukin 6[J]. J Exp Med, 1994, 179(5): 1529-1537.
doi: 10.1084/jem.179.5.1529 pmid: 8163936 |
[44] |
Porrett PM, Yuan X, Larosa DF, et al. Mechanisms underlying blockade of allograft acceptance by TLR ligands[J]. J Immunol, 2008, 181(3): 1692-1699.
doi: 10.4049/jimmunol.181.3.1692 pmid: 18641305 |
[45] |
Vuerich M, Harshe R, Frank LA, et al. Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis[J]. J Hepatol, 2021, 74(1): 48-57.
doi: 10.1016/j.jhep.2020.06.044 pmid: 32663496 |
[46] |
Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359(6380): 1156-1161.
doi: 10.1126/science.aar7201 pmid: 29590047 |
[47] |
Schiering C, Wincent E, Metidji A, et al. Feedback control of AHR signalling regulates intestinal immunity[J]. Nature, 2017, 542(7640): 242-245.
doi: 10.1038/nature21080 |
[48] |
Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation[J]. Nature, 2019, 576(7785): 143-148.
doi: 10.1038/s41586-019-1785-z |
[49] |
Wang H, Feng X, Yan W, et al. Regulatory T cells in autoimmune hepatitis: Unveiling their roles in mouse models and patients[J]. Front Immunol, 2020, 11: 575572.
doi: 10.3389/fimmu.2020.575572 URL |
[50] |
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455.
doi: 10.1038/nature12726 |
[51] |
Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and the immune system[J]. Nat Rev Immunol, 2017, 17(4): 219-232.
doi: 10.1038/nri.2017.7 pmid: 28260787 |
[52] |
Liang M, Liwen Z, Jianguo S, et al. Fecal microbiota transplantation controls progression of experimental autoimmune hepatitis in mice by modulating the TFR/TFH immune imbalance and intestinal microbiota composition[J]. Front Immunol, 2021, 12: 728723.
doi: 10.3389/fimmu.2021.728723 URL |
[53] |
Sebode M, Schulz L, Lohse AW. “Autoimmune(-Like)” drug and herb induced liver injury: New insights into molecular pathogenesis[J]. Int J Mol Sci, 2017, 18(9):1954.
doi: 10.3390/ijms18091954 URL |
[54] |
Grant CR, Holder BS, Liberal R, et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis[J]. Clin Exp Immunol, 2017, 189(1): 71-82.
doi: 10.1111/cei.12956 pmid: 28257599 |
[55] |
Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A[J]. J Clin Invest, 1992, 90(1): 196-203.
doi: 10.1172/JCI115836 pmid: 1634608 |
[56] |
Yang Y, Palm NW. Immunoglobulin A and the microbiome[J]. Curr Opin Microbiol, 2020, 56: 89-96.
doi: S1369-5274(20)30099-0 pmid: 32889295 |
[57] |
Pietrzak B, Tomela K, Olejnik-Schmidt A, et al. Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells[J]. Int J Mol Sci, 2020, 21(23):9254.
doi: 10.3390/ijms21239254 URL |
[58] |
Suzuki K, Maruya M, Kawamoto S, et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut[J]. Immunity, 2010, 33(1): 71-83.
doi: 10.1016/j.immuni.2010.07.003 pmid: 20643338 |
[59] |
Peterson DA, Mcnulty NP, Guruge JL, et al. IgA response to symbiotic bacteria as a mediator of gut homeostasis[J]. Cell Host Microbe, 2007, 2(5): 328-339.
doi: 10.1016/j.chom.2007.09.013 pmid: 18005754 |
[60] |
Lin H, Lin J, Pan T, et al. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction[J]. Cell Death Dis, 2023, 14(1): 68.
doi: 10.1038/s41419-023-05589-3 pmid: 36709322 |
[1] | 宋佳亮, 蒋英杰, 孔瑞娜, 蔡青, 高洁. 以IgE和嗜酸粒细胞升高伴多发淋巴结肿大为主要表现的IgG4相关性疾病1例报告[J]. 临床荟萃, 2024, 39(1): 57-60. |
[2] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[3] | 李阳, 默峰, 辛志飞, 王倩, 邓新娜. 特殊临床表现多系统免疫相关不良事件1例[J]. 临床荟萃, 2023, 38(7): 633-637. |
[4] | 裴红运, 文洁, 山凤莲. 结核病患者淋巴细胞程序性细胞死亡受体-1表达变化的研究进展[J]. 临床荟萃, 2023, 38(7): 659-662. |
[5] | 杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
[6] | 孙星星, 林海. 儿童重症肺炎的免疫功能变化及预后危险因素[J]. 临床荟萃, 2023, 38(6): 521-525. |
[7] | 程婷婷, 齐彩英, 张雪莲, 肖梦, 隋伟行, 李小燕, 刘建英. 重症肺炎支原体肺炎与血清IgE和C反应蛋白水平的相关性及临床特征[J]. 临床荟萃, 2023, 38(5): 433-437. |
[8] | 冷婉铜, 陶洁. 多发性骨髓瘤患者治疗后发生静脉血栓栓塞的危险因素[J]. 临床荟萃, 2023, 38(4): 340-345. |
[9] | 周大伟, 费长东, 刘宇鹏, 张华霖. 获得性免疫缺陷综合征合并重症肺炎1例并文献复习[J]. 临床荟萃, 2023, 38(4): 352-355. |
[10] | 黄小敏, 赵旭辉, 达德转, 马桃梅, 李红玲. EB病毒感染和程序性死亡受体配体1表达在晚期胃癌免疫靶向治疗中的研究进展[J]. 临床荟萃, 2023, 38(11): 1048-1052. |
[11] | 何培华, 周幸福, 洪炜鸿, 王利纯, 刘素君, 金玉燕, 曾佳豪, 刘立昌. IgG4相关性肾病4例临床分析[J]. 临床荟萃, 2023, 38(11): 1016-1021. |
[12] | 王馨雪, 赵丹, 柳惠未, 叶桦, 徐梦丹. 先天免疫反应与非酒精性脂肪性肝病关系的研究进展[J]. 临床荟萃, 2022, 37(9): 846-854. |
[13] | 王晶霞, 汤灵玲. 肠道微生物群疗法防治复发性艰难梭菌感染研究进展[J]. 临床荟萃, 2022, 37(8): 759-763. |
[14] | 轩晓倩, 赵君慧, 杨小茜. 炎性指标在非小细胞肺癌患者预后中的临床意义[J]. 临床荟萃, 2022, 37(7): 663-667. |
[15] | 叶倩, 凌志, 刘申香, 路国涛, 殷旭东. 糖皮质激素对晚期肿瘤患者免疫疗效影响的Meta分析[J]. 临床荟萃, 2022, 37(7): 591-598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||