临床荟萃 ›› 2024, Vol. 39 ›› Issue (5): 413-419.doi: 10.3969/j.issn.1004-583X.2024.05.005

• 论著 • 上一篇    下一篇

基于SEER数据库使用列线图对四肢骨肉瘤发生肺转移风险预测模型的构建与验证

王壮壮1, 任欢2, 刘彦廷3, 田春雷3, 艾文兵4()   

  1. 1.谷城县人民医院 骨外科,湖北 襄阳 441700
    2.湖北医药学院,湖北 十堰 442000
    3.三峡大学第一临床医学院 神经外科,湖北 宜昌 443003
    4.宜昌市夷陵医院 神经外科,湖北 宜昌 443003
  • 收稿日期:2023-10-07 出版日期:2024-05-20 发布日期:2024-07-05
  • 通讯作者: 艾文兵,Email:1043642574@qq.com
  • 基金资助:
    国家自然科学基金项目——TRPV1激活mTOR信号通路:局灶性皮质发育不良癫痫发作的独特机制?(81701278);湖北省卫健委项目——巨噬细胞源性exosomes通过NF-κB信号通路调控颅内动脉瘤破裂的机制研究(WJ2019M063);宜昌市医疗卫生科技项目——长链非编码RNA MALAT1调控网络在人脑胶质瘤化疗耐药中的作用及机制研究(A18-301-02)

Construction of a nomogram to predict the risk of lung metastasis in extremity osteosarcomas based on the SEER database and its validation

Wang Zhuangzhuang1, Ren Huan2, Liu Yanting3, Tian Chunlei3, Ai Wenbing4()   

  1. 1. Department of Orthopedics, the People's Hospital of Gucheng, Xiangyang 441700, China
    2. Hubei University of Medicine, Shiyan 442000, China
    3. Department of Neurosurgery, the First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
    4. Department of Neurosurgery, Yiling Hospital, Yichang 443003, China
  • Received:2023-10-07 Online:2024-05-20 Published:2024-07-05
  • Contact: Ai Wenbing, Email: 1043642574@qq.com

摘要:

目的 构建列线图模型来预测四肢骨肉瘤患者的肺转移风险。方法 收集2010-2020年SEER数据库中1 610例四肢骨肉瘤患者,按照7∶3的比例将数据分为训练集与验证集。采用单因素及多因素logistic回归分析四肢骨肉瘤患者发生肺转移的独立影响因素,并构建列线图模型。采用受试者工作特征曲线、Calibration校准曲线和决策曲线分析来评价列线图模型的检验效能。结果 Logistic回归结果显示,较高的T分期、发生淋巴结转移、拒绝接受手术、接受放化疗为四肢骨肉瘤患者发生肺转移的独立危险因素(P<0.05)。训练集预测四肢骨肉瘤发生肺转移的最佳受试者工作特征曲线下面积为0.801,验证集受试者工作特征曲线下面积为0.640;训练集与验证集曲线吻合良好;决策曲线分析显示列线图模型预测概率阈值在较大范围内临床净收益较高。结论 本研究所构建的四肢骨肉瘤患者发生肺转移风险的列线图模型具有良好的预测精度及临床实用性,有助于骨科医生对四肢骨肉瘤患者做出更快、更可靠的临床预测,提供个体化诊疗方案。

关键词: 骨肉瘤, 肿瘤转移, SEER数据库, 列线图, 风险预测

Abstract:

Objective To construct a nomogram to predict the risk of lung metastasis in patients with extremity osteosarcomas. Methods Clinical data of 1 610 extremity osteosarcoma patients were acquired from the National Cancer Institute’s Surveillance, Epidemiology, and End Results database from 2010 to 2020. The data were assigned into the training dataset and validation dataset at a ratio of 7:3. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for the occurrence of lung metastasis in patients with extremity osteosarcomas. A nomogram to predict risk factors for lung metastasis in patients with extremity osteosarcomas was then constructed based on the results of multivariate logistic regression analysis. Its performance was assessed by the receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA). Results Logistic regression analysis showed that advanced T staging, lymph node metastasis, refusal of surgery and treatment of radiotherapy and chemotherapy were independent risk factors for lung metastases in patients with extremity osteosarcomas (P<0.05). The area under the curve of the nomogram in predicting lung metastasis of extremity osteosarcomas was 0.801 and 0.640 in the training dataset and validation dataset, respectively. The calibration curve and DCA showed the good accuracy and a high net benefit over a wide range of probability thresholds, respectively. Conclusion We created a nomogram to predict lung metastasis in patients with extremity osteosarcomas, showing high accuracy and feasibility. It assists orthopedists to make a faster and more reliable prediction and provide an individualized treatment.

Key words: osteosarcoma, neoplasm metastasis, SEER data, nomogram, risk prediction

中图分类号: