临床荟萃 ›› 2024, Vol. 39 ›› Issue (7): 668-672.doi: 10.3969/j.issn.1004-583X.2024.07.016
• 综述 • 上一篇
收稿日期:
2023-11-22
出版日期:
2024-07-20
发布日期:
2024-08-02
通讯作者:
张茜
E-mail:zhangqxyk2006@163.com
基金资助:
Received:
2023-11-22
Online:
2024-07-20
Published:
2024-08-02
摘要:
新型冠状病毒肺炎(corona virus disease 2019, COVID-19)是由严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)引起的急性传染病。SARS-CoV-2新变异株不断出现,且COVID-19在全世界范围内仍然处于散发和流行状态,亟需研发一种新的、高效的治疗性药物或疫苗。自然杀伤细胞(natural killer cell, NK细胞)可直接杀伤被病毒感染的靶细胞,其分泌的细胞因子发挥的免疫调节功能在炎症反应中发挥着重要作用,目前回输NK细胞治疗感染性疾病的安全性和有效性已经得到证实。NK细胞有望成为防治COVID-19非常有潜力的新型药物。本文通过对NK细胞及其免疫激活在COVID-19中的作用进行综述,以寻求防治COVID-19的新思路。
中图分类号:
张研, 张茜, 石亚军. 自然杀伤细胞及其免疫激活对防治新型冠状病毒感染机遇与挑战[J]. 临床荟萃, 2024, 39(7): 668-672.
[1] | Perlman S. Another decade, another coronavirus[J]. N Engl J Med, 2020, 382(8):760-762. |
[2] |
Brant AC, Tian W, Majerciak V, et al. SARS-CoV-2: From its discovery to genome structure, transcription, and replication[J]. Cell Biosci, 2021, 11(1):136.
doi: 10.1186/s13578-021-00643-z pmid: 34281608 |
[3] | Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novelcoronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506. |
[4] |
Martin MA, VanInsberghe D, Koelle K. Insights from SARS-CoV-2 sequences[J]. Science, 2021, 371(6528):466-467.
doi: 10.1126/science.abf3995 pmid: 33510015 |
[5] |
Fernandes Q, Inchakalody VP, Merhi M, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines[J]. Ann Med, 2022, 54(1):524-540.
doi: 10.1080/07853890.2022.2031274 pmid: 35132910 |
[6] | Alkhatib M, Svicher V, Salpini R, et al. SARS-CoV-2 variants and their relevant mutational profiles: Update summer 2021[J]. Microbiol Spectr, 2021 9(3):e109621. |
[7] |
Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18(11):671-688.
doi: 10.1038/s41577-018-0061-z pmid: 30209347 |
[8] | Sahoo D, Katkar GD, Khandelwal S, et al. AI-guided discovery of the invariant hostresponse to viral pandemics[J]. bioRxiv, 2021, 68:103390. |
[9] | Bjorkstrom NK, Strunz B, Ljunggren HG. Natural killer cells in antiviral immunity[J]. Nat Rev Immunol, 2022, 22(2):112-123. |
[10] | Sheppard S, Santosa EK, Lau CM, et al. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function[J]. Cell Rep, 2021, 35(9):109210. |
[11] |
Abel AM, Yang C, Thakar MS, et al. Natural killer cells: Development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9:1869.
doi: 10.3389/fimmu.2018.01869 pmid: 30150991 |
[12] | Prager I, Liesche C, van Ooijen H, et al. NK cells switch from granzyme B to deathreceptor-mediated cytotoxicity during serial killing[J]. J Exp Med, 2019, 216(9):2113-2127. |
[13] |
Gwalani LA, Orange JS. Single degranulations in NK cells can mediate target cell killing[J]. J Immunol, 2018, 200(9):3231-3243.
doi: 10.4049/jimmunol.1701500 pmid: 29592963 |
[14] | Sharma A, Ahmad FI, Lal SK. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention[J]. Viruses, 2021, 13(2):202. |
[15] | Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8):727-733. |
[16] | Sharma A, Lal SK. Is tetherin a true antiviral: The influenza a virus controversy[J]. Rev Med Virol, 2019, 29(3): e2036. |
[17] |
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2):281-292.
doi: S0092-8674(20)30262-2 pmid: 32155444 |
[18] |
Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19[J]. Clin Infect Dis, 2020, 71(6):1400-1409.
doi: 10.1093/cid/ciaa410 pmid: 32270184 |
[19] | Pace M, Ogbe A, Hurst J, et al. Impact of antiretroviral therapy in primary HIV infection on natural killer cell function and the association with viral rebound and HIV DNAfollowing treatment interruption[J]. Front Immunol, 2022, 13:878743. |
[20] | Cui X, Zhao Z, Zhang T, et al. A systematic review and meta-analysis of children with coronavirus disease 2019 (COVID-19)[J]. J Med Virol, 2021, 93(2):1057-1069. |
[21] |
Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer[J]. Nat Rev Immunol, 2012, 12(4):239-252.
doi: 10.1038/nri3174 pmid: 22437937 |
[22] | Deng X, Terunuma H, Nieda M. Exploring the utility of NK cells in COVID-19[J]. Biomedicines, 2022, 10(5) :1002. |
[23] |
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study[J]. Lancet, 2020, 395(10223):507-513.
doi: S0140-6736(20)30211-7 pmid: 32007143 |
[24] |
Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy[J]. JAMA, 2020, 323(16):1574-1581.
doi: 10.1001/jama.2020.5394 pmid: 32250385 |
[25] |
Distler J, Gyorfi AH, Ramanujam M, et al. Shared and distinct mechanisms of fibrosis[J]. Nat Rev Rheumatol, 2019, 15(12):705-730.
doi: 10.1038/s41584-019-0322-7 pmid: 31712723 |
[26] |
Grabarz F, Aguiar CF, Correa-Costa M, et al. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis[J]. Inflammopharmacology, 2018, 26(2):491-504.
doi: 10.1007/s10787-017-0383-7 pmid: 28779430 |
[27] |
Wang L, Wang Y, Quan J. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy[J]. Mol Med, 2020, 26(1):81.
doi: 10.1186/s10020-020-00207-w pmid: 32873229 |
[28] | Qi F, Qian S, Zhang S, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses[J]. Biochem Biophys Res Commun, 2020, 526(1):135-140. |
[29] | Zhao Y, Zhao Z, Wang Y, et al. Single-Cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2[J]. Am J Respir Crit Care Med, 2020, 202(5):756-759. |
[30] |
Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission[J]. Gastroenterology, 2020, 158(6):1518-1519.
doi: S0016-5085(20)30281-X pmid: 32142785 |
[31] |
Cholankeril G, Podboy A, Aivaliotis VI, et al. High prevalence of concurrent gastrointestinal manifestations in patients with severe acute respiratory syndrome coronavirus 2: Early experience from California[J]. Gastroenterology, 2020, 159(2):775-777.
doi: S0016-5085(20)30471-6 pmid: 32283101 |
[32] |
Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes[J]. Science, 2020, 369(6499):50-54.
doi: 10.1126/science.abc1669 pmid: 32358202 |
[33] | Saeed NK, Al-Beltagi M, Bediwy AS, et al. Gut microbiota in various childhood disorders: Implication and indications[J]. World J Gastroenterol, 2022, 28(18):1875-1901. |
[34] | Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117(20):10970-10975. |
[35] |
Bavishi C, Bonow RO, Trivedi V, et al. Special article - Acute myocardial injury in patients hospitalized with COVID-19 infection: A review[J]. Prog Cardiovasc Dis, 2020, 63(5):682-689.
doi: 10.1016/j.pcad.2020.05.013 pmid: 32512122 |
[36] | Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: A case report and insights[J]. Infection, 2020, 48(5):773-777. |
[37] | 杨逸成, 熊长明. 新型冠状病毒感染与心血管疾病和心肌损伤的研究进展[J]. 实用医学杂志, 2020, 36(12):1547-1551. |
[38] | 高宇, 刘静, 杨小明. 新型冠状病毒感染对心血管系统的影响[J]. 现代预防医学, 2021, 48(14):2673-2676. |
[39] |
Xue M, Xie J, Liu L, et al. Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: A prospective observational study[J]. J Transl Med, 2019, 17(1):57.
doi: 10.1186/s12967-019-1811-9 pmid: 30813927 |
[40] | Xue M, Tang Y, Liu X, et al. Circulating Th1 and Th2 subset accumulation kinetics in septic patients with distinct infection sites: Pulmonary versus nonpulmonary[J]. Mediators Inflamm, 2020, 2020:8032806. |
[41] | Wang H, Cui W, Qiao L, et al. Overexpression of miR-451a in sepsis and septic shock patients is involved in the regulation of sepsis-associated cardiac dysfunction and inflammation[J]. Genet Mol Biol, 2020, 43(4):e20200009. |
[42] | Yu D, Peng X, Li P. The correlation between Jun N-terminal kinase pathway-associated phosphatase and Th1 cell or Th17 cell in sepsis and their potential roles in clinical sepsis management[J]. Ir J Med Sci, 2021, 190(3):1173-1181. |
[43] |
Dong C. Cytokine regulation and function in T cells[J]. Annu Rev Immunol, 2021, 39:51-76.
doi: 10.1146/annurev-immunol-061020-053702 pmid: 33428453 |
[44] | Li W, Dong M, Chu L, et al. MicroRNA-451 relieves inflammation in cerebral ischemia-reperfusion via the Toll-like receptor 4/MyD88/NF-κB signaling pathway[J]. Molecular Medicine Reports, 2019, 20(4) :3043-3054. |
[45] | Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets[J]. Int J Mol Sci, 2019, 20(21):5376. |
[46] |
Qiu P, Liu Y, Zhang J. Review: The role and mechanisms of macrophage autophagy in sepsis[J]. Inflammation, 2019, 42(1):6-19.
doi: 10.1007/s10753-018-0890-8 pmid: 30194660 |
[47] | Tan ZC, Fu LH, Wang DD, et al. Cardiac manifestations of patients with COVID-19 pneumonia and related treatment recommendations[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2020, 48(6):434-438. |
[48] |
Wijaya RS, Read SA, Truong NR, et al. HBV vaccination and HBV infection induces HBV-specific natural killer cell memory[J]. Gut, 2021, 70(2):357-369.
doi: 10.1136/gutjnl-2019-319252 pmid: 32229546 |
[49] | Terren I, Orrantia A, Astarloa-Pando G, et al. Cytokine-induced memory-like NK cells: From the basics to clinical applications[J]. Front Immunol, 2022, 13:884648. |
[1] | 于菁怡, 司元国, 兰翠霞, 邢家璇. 新冠肺炎患者院外使用利伐沙班抗凝安全性和有效性的meta分析[J]. 临床荟萃, 2024, 39(6): 485-493. |
[2] | 只丙娣, 刘英, 刘莹, 张复波, 李俊峰. 新型冠状病毒感染合并李斯特菌脑膜炎1例并文献复习[J]. 临床荟萃, 2024, 39(4): 347-351. |
[3] | 魏芳, 张羽, 王青青, 郑国启. 新型冠状病毒肺炎合并急性胰腺炎11例临床特征分析[J]. 临床荟萃, 2024, 39(3): 239-243. |
[4] | 黄赛虎, 龙中洁, 吴水燕, 柏振江. 新冠疫情前后重症肺炎合并急性呼吸衰竭患儿的临床特点与病原学分析[J]. 临床荟萃, 2024, 39(2): 140-143. |
[5] | 位增, 曹灵, 佘敦敏, 刘彦, 王艳, 张真稳. 54例2型糖尿病患者合并新型冠状病毒感染的死亡原因分析[J]. 临床荟萃, 2023, 38(9): 806-812. |
[6] | 张会, 丁东瑞, 金天然. 新型冠状病毒SARS-CoV-2的相关研究——过去与未来[J]. 临床荟萃, 2023, 38(7): 638-646. |
[7] | 黄华艳, 林春光, 吴昌儒, 陈永东, 黄焕谋. 新型冠状病毒Omicron变异株与Delta变异株感染患者的临床特征分析[J]. 临床荟萃, 2023, 38(7): 600-605. |
[8] | 倪艺芸, 刘彬, 梁琪, 李晓凤. 白细胞介素6和C反应蛋白预测新型冠状病毒肺炎严重程度的meta分析[J]. 临床荟萃, 2023, 38(6): 493-499. |
[9] | 黄华艳, 林春光, 陈永东, 曾其毅, 吴昌儒. 新型冠状病毒Delta变异株感染同船海员的临床特点分析[J]. 临床荟萃, 2022, 37(4): 311-314. |
[10] | 郭茹, 刘芮宏, 蔺雪峰, 韩轩茂, 张柱, 陈瑞英. 危重型新型冠状病毒肺炎患者心肌肌钙蛋白及D-二聚体水平与病死率的Meta分析[J]. 临床荟萃, 2022, 37(4): 293-298. |
[11] | 廖丁邦, 陈水文, 李镇清. 不可分型流感嗜血杆菌生物膜研究进展[J]. 临床荟萃, 2022, 37(4): 379-384. |
[12] | 冯媛, 李萍, 郑佳佳, 臧佳佳, 平芬. 新冠疫情背景下哮喘患者心理状态及影响因素[J]. 临床荟萃, 2022, 37(3): 275-278. |
[13] | 郭文秀, 王海龙, 王斗斗. 心肌型脂肪酸结合蛋白与新型冠状病毒肺炎轻重症的相关性[J]. 临床荟萃, 2022, 37(12): 1104-1107. |
[14] | 周子涵, 崔炜. 心血管系统常用药物对新型冠状病毒肺炎感染风险及不良预后的影响[J]. 临床荟萃, 2022, 37(10): 869-888. |
[15] | 卢昊阳, 卢家忠, 韩明锋, 吕新才, 张标, 戎成振, 贾蕾蕾, 潘强强, 马蕾蕾, 赵韧. 新型冠状病毒肺炎合并心血管疾病的临床治疗观察[J]. 临床荟萃, 2021, 36(3): 203-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||