[1] Xu J, Liu L, Wang Y, et al. TOAST subtypes: its influence upon doctors' decisions of antihypertensive prescription at discharge for ischemic stroke patients[J]. Patient Prefer Adherence, 2012,6: 911-914. [2] Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis[J]. BMJ,2010,341: c3666. [3] Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging[J]. Lancet Neurol, 2013, 12(5): 483-497. [4] 唐杰,付建辉. 脑小血管病的发病机制[J]. 国际脑血管病杂志, 2013, 21(4): 293-298. [5] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol, 2010,9(7): 689-701. [6] 刘妮,高培毅. 脑小血管病磁共振影像研究概况[J]. 中国卒中杂志, 2014, 9(5): 450-454. [7] Potter GM, Doubal FN, Jackson CA, et al. Counting cavitating lacunes underestimates the burden of lacunar infarction[J]. Stroke, 2010,41(2): 267-272. [8] Fanning JP, Wesley AJ, Wong AA,et al. Emerging spectra of silent brain infarction[J]. Stroke, 2014, 45(11): 3461-3471. [9] Fanning JP, Wong AA, Fraser JF. The epidemiology of silent brain infarction: a systematic review of population-based cohorts[J]. BMC Med, 2014, 12: 119. [10] Smith EE, Salat DH, Jeng J, et al. Correlations between MRI white matter lesion location and executive function and episodic memory[J]. Neurology, 2011, 76(17): 1492-1429. [11] Duering M, Csanadi E, Gesierich B, et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease[J]. Brain, 2013, 136(Pt 9): 2717-2726. [12] Cheng AL, Batool S, McCreary CR, et al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds[J]. Stroke, 2013, 44(10): 2782-2786. [13] Brundel M, Kwa VI, Bouvy WH, et al. Cerebral microbleeds are not associated with long-term cognitive outcome in patients with transient ischemic attack or minor stroke[J]. Cerebrovasc Dis, 2014, 37(3): 195-202. [14] Poels MM, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study[J]. Neurology, 2012, 78(5): 326-333. [15] van Norden AG, van den Berg HA, de Laat KF, et al. Frontal and temporal microbleeds are related to cognitive function: the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study[J]. Stroke, 2011, 42(12): 3382-3386. [16] Ghorbani A, Ahmadi MJ, Shemshaki H. The value of transcranial Doppler derived pulsatility index for diagnosing cerebral small-vessel disease[J]. Adv Biomed Res, 2015, 4: 54. [17] Mok V, Ding D, Fu J, et al. Transcranial Doppler ultrasound for screening cerebral small vessel disease: a community study[J]. Stroke, 2012, 43(10): 2791-2713. [18] Schmidt R, Schmidt H, Pichler M, et al. C-reactive protein, carotid atherosclerosis, and cerebral small-vessel disease: results of the Austrian Stroke Prevention Study[J]. Stroke, 2006, 37(12): 2910-2916. [19] Wada M, Nagasawa H, Kurita K, et al. Cerebral small vessel disease and C-reactive protein: results of a cross-sectional study in community-based Japanese elderly[J]. J Neurol Sci, 2008, 264(1/2): 43-49. [20] van Dijk EJ, Prins ND, Vermeer SE, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study[J]. Circulation, 2005, 112(6): 900-9005. [21] Mitaki S, Nagai A, Oguro H, et al. C-reactive protein levels are associated with cerebral small vessel-related lesions[J]. Acta Neurol Scand,2015,May 14 [Epub ahead of print]. [22] Ma Y, Zhao X, Zhang W, et al. Homocysteine and ischemic stroke subtype: a relationship study in Chinese patients[J]. Neurol Res, 2010, 32(6): 636-641. [23] Feng C, Bai X, Xu Y, et al. Hyperhomocysteinemia associates with small vessel disease more closely than large vessel disease[J]. Int J Med Sci, 2013, 10(4): 408-412. [24] Akoudad S, Sedaghat S, Hofman A, et al. Kidney function and cerebral small vessel disease in the general population[J]. Int J Stroke, 2015, 10(4): 603-608. [25] Hassan A, Lansbury A, Catto AJ, et al. Angiotensin converting enzyme insertion/deletion genotype is associated with leukoaraiosis in lacunar syndromes[J]. J Neurol Neurosurg Psychiatry, 2002, 72(3): 343-346. [26] Brenner D, Labreuche J, Pico F, et al. The renin-angiotensin-aldosterone system in cerebral small vessel disease[J]. J Neurol, 2008, 255(7): 993-1000. [27] Jochemsen HM, Geerlings MI, Grool AM, et al. Angiotensin-converting enzyme and progression of white matter lesions and brain atrophy--the SMART-MR study[J]. J Alzheimers Dis, 2012, 29(1): 39-49. [28] Jonsson M, Zetterberg H, van Straaten E, et al. Cerebrospinal fluid biomarkers of white matter lesions-cross-sectional results from the LADIS study[J]. Eur J Neurol, 2010, 17(3): 377-382. [29] Candelario-Jalil E, Thompson J, Taheri S, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment[J]. Stroke, 2011, 42(5): 1345-1350. [30] Bjerke M, Zetterberg H, Edman A, et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer's disease[J]. J Alzheimers Dis, 2011, 27(3): 665-676. [31] 脑小血管病诊治专家共识组. 脑小血管病诊治专家共识[J]. 中华内科杂志, 2013, 52(10): 893-896. |