[1] |
Markowitz G. Glomerular disease: Updated Oxford Classification of IgA nephropathy: a new MEST-C score[J]. Nat Rev Nephrol, 2017,13(7):385-386.
doi: 10.1038/nrneph.2017.67
pmid: 28529339
|
[2] |
Chen T, Xia E, Chen T, et al. Identification and external validation of IgA nephropathy patients benefiting from immunosuppression therapy[J]. EBioMedicine, 2020,52:102657.
doi: 10.1016/j.ebiom.2020.102657
URL
|
[3] |
Jiang L, Zhang JJ, Lv JC, et al. Malignant hypertension in IgA nephropathy was not associated with background pathological phenotypes of glomerular lesions[J]. Nephrol Dial Transplant, 2008,23(12):3921-3927.
doi: 10.1093/ndt/gfn371
URL
|
[4] |
Timmermans S, Abdul-Hamid MA, Vanderlocht J, et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities[J]. Kidney Int, 2017,91(6):1420-1425.
doi: 10.1016/j.kint.2016.12.009
URL
|
[5] |
Zhang Z, Jiang SM, Ma YP, et al. Expression of the intrarenal angiotensin receptor and the role of renin-angiotensin system inhibitors in IgA nephropathy[J]. Mol Cell Biochem, 2019,453(1-2):103-110.
doi: 10.1007/s11010-018-3435-4
URL
|
[6] |
Trimarchi H, Barratt J, Cattran DC, et al. Oxford Classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group[J]. Kidney Int, 2017,91(5):1014-1021.
doi: 10.1016/j.kint.2017.02.003
URL
|
[7] |
Yang Y, Zhang Z, Zhuo L, et al. The Spectrum of biopsy-proven glomerular disease in China: A systematic review[J]. Chin Med J (Engl), 2018,131(6):731-735.
|
[8] |
Barbour SJ, Coppo R, Zhang H, et al. Evaluating a new international risk-prediction tool in IgA nephropathy[J]. JAMA Intern Med, 2019,179(7):942-952.
doi: 10.1001/jamainternmed.2019.0600
pmid: 30980653
|
[9] |
Unger T, Borghi C, Charchar F, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines[J]. Hypertension, 2020,75(6):1334-1357.
doi: 10.1161/HYPERTENSIONAHA.120.15026
URL
|
[10] |
Mathew RO, Nayer A, Asif A. The endothelium as the common denominator in malignant hypertension and thrombotic microangiopathy[J]. J Am Soc Hypertens, 2016,10(4):352-359.
doi: 10.1016/j.jash.2015.12.007
pmid: 26778772
|
[11] |
Cavero T, Arjona E, Soto K, et al. Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome[J]. Kidney Int, 2019,96(4):995-1004.
doi: 10.1016/j.kint.2019.05.014
URL
|
[12] |
Nagayama Y, Inoue Y, Inui K, et al. Comparison of renal outcome among Japanese patients with or without microangiopathic hemolysis in malignant phase hypertension: A single-center retrospective study[J]. Nephron, 2017,137(3):197-204.
doi: 10.1159/000479073
URL
|
[13] |
Timmermans S, Werion A, Damoiseaux J, et al. Diagnostic and risk factors for complement defects in hypertensive emergency and thrombotic microangiopathy[J]. Hypertension, 2020,75(2):422-430.
doi: 10.1161/HYPERTENSIONAHA.119.13714
pmid: 31865800
|
[14] |
Abu Hamad R, Berman S, Hachmo Y, et al. Response of renal podocytes to excessive hydrostatic pressure: A pathophysiologic cascade in a malignant hypertension model[J]. Kidney Blood Press Res, 2017,42(6):1104-1118.
doi: 10.1159/000485774
URL
|
[15] |
Karnik SS, Unal H, Kemp JR, et al. International union of basic and clinical pharmacology. XCIX. Angiotensin receptors: Interpreters of pathophysiological angiotensinergic stimuli [corrected][J]. Pharmacol Rev, 2015,67(4):754-819.
doi: 10.1124/pr.114.010454
URL
|
[16] |
Itami H, Hara S, Samejima K, et al. Complement activation is associated with crescent formation in IgA nephropathy[J]. Virchows Arch, 2020,477(4):565-572.
doi: 10.1007/s00428-020-02800-0
URL
|
[17] |
Peng W, Tang Y, Tan L, et al. Crescents and global glomerulosclerosis in Chinese IgA nephropathy patients: A five-year follow-up[J]. Kidney Blood Press Res, 2019,44(1):103-112.
doi: 10.1159/000498874
URL
|
[18] |
Park S, Kim H W, Park J T, et al. Relationship between complement deposition and the Oxford classification score and their combined effects on renal outcome in immunoglobulin A nephropathy[J]. Nephrol Dial Transplant, 2020,35(12):2103-2137.
doi: 10.1093/ndt/gfz179
URL
|
[19] |
Alamartine E, Sauron C, Laurent B, et al. The use of the Oxford classification of IgA nephropathy to predict renal survival[J]. Clin J Am Soc Nephrol, 2011,6(10):2384-2388.
doi: 10.2215/CJN.01170211
pmid: 21885791
|
[20] |
Zeng CH, Le W, Ni Z, et al. A multicenter application and evaluation of the oxford classification of IgA nephropathy in adult chinese patients[J]. Am J Kidney Dis, 2012,60(5):812-820.
doi: 10.1053/j.ajkd.2012.06.011
URL
|
[21] |
Gutierrez E, Zamora I, Ballarin J A, et al. Long-term outcomes of IgA nephropathy presenting with minimal or no proteinuria[J]. J Am Soc Nephrol, 2012,23(10):1753-1760.
doi: 10.1681/ASN.2012010063
URL
|
[22] |
Wyatt RJ, Julian BA. IgA nephropathy[J]. N Engl J Med, 2013,368(25):2402-2414.
doi: 10.1056/NEJMra1206793
URL
|
[23] |
Fellstrom BC, Barratt J, Cook H, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial[J]. Lancet, 2017,389(10084):2117-2127.
doi: 10.1016/S0140-6736(17)30550-0
URL
|
[24] |
Inker LA, Mondal H, Greene T, et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: An individual-patient meta-analysis[J]. Am J Kidney Dis, 2016,68(3):392-401.
doi: 10.1053/j.ajkd.2016.02.042
URL
|