临床荟萃 ›› 2021, Vol. 36 ›› Issue (9): 850-855.doi: 10.3969/j.issn.1004-583X.2021.09.017
收稿日期:
2021-05-10
出版日期:
2021-09-20
发布日期:
2021-10-05
通讯作者:
王保兴
E-mail:wbxing@vip.sina.com
Received:
2021-05-10
Online:
2021-09-20
Published:
2021-10-05
摘要:
血管钙化是慢性肾脏病(chronic kidney disease, CKD)患者重要的并发症之一,钙磷代谢紊乱、炎症、氧化应激、细胞凋亡、自噬及促钙化因子与抑钙化因子的失衡等各种因素均会加重钙化的进展,增加肾脏疾病的进展及心血管病死率。因此,本文将对CKD患者血管钙化的临床特点、发病机制、评估方法及治疗方法的相关进展进行综述,以期为临床医生早期诊断及治疗血管钙化提供更多的思路。
中图分类号:
李靖, 王保兴. 慢性肾脏病患者血管钙化的研究进展[J]. 临床荟萃, 2021, 36(9): 850-855.
[1] |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100):1211-1259.
doi: 10.1016/S0140-6736(17)32154-2 URL |
[2] | Hou JH, Zhu HX, Zhou ML, et al. Changes in the spectrum of kidney diseases: An analysis of 40, 759 biopsy-proven cases from 2003 to 2014 in China[J]. Kidney Dis (Basel), 2018, 4(1):10-19. |
[3] |
Cano-Megías M, Guisado-Vasco P, Bouarich H, et al. Coronary calcification as a predictor of cardiovascular mortality in advanced chronic kidney disease: A prospective long-term follow-up study[J]. BMC Nephrol, 2019, 20(1):188.
doi: 10.1186/s12882-019-1367-1 pmid: 31138150 |
[4] | Cano-Megías M, Bouarich H, Guisado-Vasco P, et al. Coronary artery calcification in patients with diabetes mellitus and advanced chronic kidney disease[J]. Endocrinol Diabetes Nutr (Engl Ed), 2019, 66(5):297-304. |
[5] |
Guo J, Erqou SA, Miller RG, et al. The role of coronary artery calcification testing in incident coronary artery disease risk prediction in type 1 diabetes[J]. Diabetologia, 2019, 62(2):259-268.
doi: 10.1007/s00125-018-4764-2 URL |
[6] |
Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism[J]. Int J Mol Sci, 2020, 21(8):2685.
doi: 10.3390/ijms21082685 URL |
[7] |
Baby D, Upadhyay M, Joseph MD, et al. Calciphylaxis and its diagnosis: A review[J]. J Family Med Prim Care, 2019, 8(9):2763-2767.
doi: 10.4103/jfmpc.jfmpc_588_19 URL |
[8] | Manzoor S, Ahmed S, Ali A, et al. Progression of medial arterial calcification in CKD[J]. Kidney Int Rep, 2018, 3(6):1328-1335. |
[9] |
Cozzolino M, Ciceri P, Galassi A, et al. The Key role of phosphate on vascular calcification[J]. Toxins (Basel), 2019, 11(4):213.
doi: 10.3390/toxins11040213 URL |
[10] |
Voelkl J, Tuffaha R, Luong TTD, et al. Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF-κB[J]. J Am Soc Nephrol, 2018, 29(6):1636-1648.
doi: 10.1681/ASN.2017050492 pmid: 29654213 |
[11] |
Voelkl J, Lang F, Eckardt KU, et al. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia[J]. Cell Mol Life Sci, 2019, 76(11):2077-2091.
doi: 10.1007/s00018-019-03054-z pmid: 30887097 |
[12] |
Zhang S, Xu J, Feng Y, et al. Extracellular acidosis suppresses calcification of vascular smooth muscle cells by inhibiting calcium influx via L-type calcium channels[J]. Clin Exp Hypertens, 2018, 40(4):370-377.
doi: 10.1080/10641963.2017.1384482 URL |
[13] |
Khalid S, Yamazaki H, Socorro M, et al. Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (Pi)-induced mineralization of osteogenic cells[J]. Free Radic Biol Med, 2020, 153:103-111.
doi: 10.1016/j.freeradbiomed.2020.04.008 URL |
[14] |
Balogh E, Tóth A, Méhes G, et al. Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an HIF-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6):1088-1099.
doi: 10.1161/ATVBAHA.119.312509 pmid: 31070451 |
[15] |
Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective[J]. Cell, 2019, 176(1-2):11-42.
doi: S0092-8674(18)31260-1 pmid: 30633901 |
[16] |
Wang J, Sun YT, Xu TH, et al. MicroRNA-30b regulates high phosphorus level-induced autophagy in vascular smooth muscle cells by targeting BECN1[J]. Cell Physiol Biochem, 2017, 42(2):530-536.
doi: 10.1159/000477602 URL |
[17] |
Xu TH, Qiu XB, Sheng ZT, et al. Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy[J]. J Cell Physiol, 2019, 234(8):14306-14318.
doi: 10.1002/jcp.v234.8 URL |
[18] |
Peng YQ, Xiong D, Lin X, et al. Oestrogen inhibits arterial calcification by promoting autophagy[J]. Sci Rep, 2017, 7(1):3549.
doi: 10.1038/s41598-017-03801-x URL |
[19] |
Liu QF, Ye JM, Yu LX, et al. Plasma s-Klotho is related to kidney function and predicts adverse renal outcomes in patients with advanced chronic kidney disease[J]. J Investig Med, 2018, 66(3):669-675.
doi: 10.1136/jim-2017-000560 URL |
[20] |
Erben RG. α-Klotho's effects on mineral homeostasis are fibroblast growth factor-23 dependent[J]. Curr Opin Nephrol Hypertens, 2018, 27(4):229-235.
doi: 10.1097/MNH.0000000000000415 URL |
[21] | Chen YX, Huang C, Duan ZB, et al. Klotho/FGF23 axis mediates high phosphate-induced vascular calcification in vascular smooth muscle cells via Wnt7b/β-catenin pathway[J]. Kaohsiung J Med Sci, 2019, 35(7):393-400. |
[22] |
Borst O, Schaub M, Walker B, et al. Pivotal role of serum- and glucocorticoid-inducible kinase 1 in vascular inflammation and atherogenesis[J]. Arterioscler Thromb Vasc Biol, 2015, 35(3):547-557.
doi: 10.1161/ATVBAHA.114.304454 URL |
[23] |
Schelski N, Luong TTD, Lang F, et al. SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18[J]. Pflugers Arch, 2019, 471(6):889-899.
doi: 10.1007/s00424-019-02256-5 URL |
[24] |
Voelkl J, Luong TT, Tuffaha R, et al. SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling[J]. J Clin Invest, 2018, 128(7):3024-3040.
doi: 10.1172/JCI96477 pmid: 29889103 |
[25] |
Avila M, Mora C, Prado MDC, et al. Osteoprotegerin is the strongest predictor for progression of arterial calcification in peritoneal dialysis patients[J]. Am J Nephrol, 2017, 46(1):39-46.
doi: 10.1159/000477380 URL |
[26] |
Hou JS, Lin YL, Wang CH, et al. Serum osteoprotegerin is an independent marker of central arterial stiffness as assessed using carotid-femoral pulse wave velocity in hemodialysis patients: A cross sectional study[J]. BMC Nephrol, 2019, 20(1):184.
doi: 10.1186/s12882-019-1374-2 URL |
[27] | Elsaeed AM, Ibrahiem AH, Ali AA. Matrix metalloproteinase 2 and osteoprotegrin as new markers of increased atherosclerotic risk in Egyptian patients with chronic kidney disease[J]. Egypt J Immunol, 2017, 24(1):153-164. |
[28] |
Figurek A, Rroji M, Spasovski G. Sclerostin: A new biomarker of CKD-MBD[J]. Int Urol Nephrol, 2020, 52(1):107-113.
doi: 10.1007/s11255-019-02290-3 URL |
[29] | Lips L, de Roij van Zuijdewijn CLM, Ter Wee PM, et al. Serum sclerostin: Relation with mortality and impact of hemodiafiltration[J]. Nephrol Dial Transplant, 2017, 32(7):1217-1223. |
[30] |
Pelletier S, Confavreux CB, Haesebaert J, et al. Serum sclerostin: The missing link in the bone-vessel cross-talk in hemodialysis patients[J]. Osteoporos Int, 2015, 26(8):2165-2174.
doi: 10.1007/s00198-015-3127-9 pmid: 25910747 |
[31] |
Zhao F, Wu Y, Yang W, et al. Inhibition of vascular calcification by microRNA-155-5p is accompanied by the inactivation of TGF-β1/Smad2/3 signaling pathway[J]. Acta Histochem, 2020, 122(4):151551.
doi: 10.1016/j.acthis.2020.151551 URL |
[32] | Lin X, Zhan JK, Zhong JY, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs[J]. Aging (Albany NY), 2019, 11(2):523-535. |
[33] |
Townsend RR. Arterial stiffness in CKD: A review[J]. Am J Kidney Dis, 2019, 73(2):240-247.
doi: S0272-6386(18)30649-8 pmid: 29908694 |
[34] |
Bouma-de Krijger A, van Ittersum FJ, Hoekstra T, et al. Short-term effects of sevelamer-carbonate on fibroblast growth factor 23 and pulse wave velocity in patients with normophosphataemic chronic kidney disease stage 3[J]. Clin Kidney J, 2019, 12(5):678-685.
doi: 10.1093/ckj/sfz027 pmid: 31584563 |
[35] |
Wu M, Tang RN, Liu H, et al. Cinacalcet ameliorates aortic calcification in uremic rats via suppression of endothelial-to-mesenchymal transition[J]. Acta Pharmacol Sin, 2016, 37(11):1423-1431.
doi: 10.1038/aps.2016.83 URL |
[36] |
Wolf M, Block GA, Chertow GM, et al. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis[J]. Clin Kidney J, 2019, 13(1):75-84.
doi: 10.1093/ckj/sfz034 URL |
[37] |
Hildebrand S, Cunningham J. Is there a role for bisphosphonates in vascular calcification in chronic kidney disease?[J]. Bone, 2021, 142:115751.
doi: 10.1016/j.bone.2020.115751 pmid: 33188959 |
[38] | Perelló J, Ferrer MD, Del Mar Pérez M, et al. Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis[J]. Br J Pharmacol, 2020, 177(19):4400-4415. |
[39] |
Perelló J, Joubert PH, Ferrer MD, et al. First-time-in-human randomized clinical trial in healthy volunteers and haemodialysis patients with SNF472, a novel inhibitor of vascular calcification[J]. Br J Clin Pharmacol, 2018, 84(12):2867-2876.
doi: 10.1111/bcp.13752 pmid: 30280390 |
[40] |
Salcedo C, Joubert PH, Ferrer MD, et al. A phase 1b randomized, placebo-controlled clinical trial with SNF472 in haemodialysis patients[J]. Br J Clin Pharmacol, 2019, 85(4):796-806.
doi: 10.1111/bcp.v85.4 URL |
[41] |
Raggi P, Bellasi A, Bushinsky D, et al. Slowing progression of cardiovascular calcification with snf472 in patients on hemodialysis: Results of a randomized phase 2b study[J]. Circulation, 2020, 141(9):728-739.
doi: 10.1161/CIRCULATIONAHA.119.044195 URL |
[1] | 顾天舒, 梁雪, 蔡嘉庚, 李广平. m6A RNA甲基化修饰在心血管疾病中的进展[J]. 临床荟萃, 2023, 38(8): 743-748. |
[2] | 王宁, 李勇. 簇集蛋白在心血管疾病中的研究进展[J]. 临床荟萃, 2022, 37(9): 842-845. |
[3] | 马洪珍, 张涛. 生物标志物评估老年慢性肾脏病患者心功能的研究进展[J]. 临床荟萃, 2022, 37(9): 855-859. |
[4] | 张怡, 崔晓冉, 杨晓红. 单核细胞/高密度脂蛋白胆固醇比值在心血管疾病中研究进展[J]. 临床荟萃, 2022, 37(6): 551-555. |
[5] | 王家琦, 高曼, 张飞飞, 李英肖, 党懿, 齐晓勇. 中性粒细胞与淋巴细胞比值联合GRACE评分对急性STEMI患者PCI术后发生院内主要不良心血管事件的预测价值[J]. 临床荟萃, 2022, 37(5): 412-417. |
[6] | 李剑钦, 盛悦越, 周寅敏, 史蔚青, 杨星辰. 不同细胞色素P450酶代谢通路下氯吡格雷联用他汀类药物用于急性冠脉综合征安全性的Meta分析[J]. 临床荟萃, 2022, 37(2): 101-105. |
[7] | 郑丽华, 杜润森, 赵亚恒, 刘鹏. 血管钙化的影响因素及预测指标[J]. 临床荟萃, 2022, 37(2): 114-118. |
[8] | 王润青, 王谦, 廖健雄. SGLT2抑制剂对2型糖尿病患者心血管结局影响的网状meta分析[J]. 临床荟萃, 2022, 37(12): 1061-1073. |
[9] | 张磊, 娄海东, 智昱, 亓树莹. PCSK9抑制剂对动脉粥样硬化性心血管疾病有效性及安全性的meta分析[J]. 临床荟萃, 2022, 37(12): 1074-1080. |
[10] | 周子涵, 崔炜. 心血管系统常用药物对新型冠状病毒肺炎感染风险及不良预后的影响[J]. 临床荟萃, 2022, 37(10): 869-888. |
[11] | 许藏丹, 赵新, 顾文元. 钠-葡萄糖共转运蛋白2抑制剂对伴有严重肾功能不全的2型糖尿病患者心血管保护作用的Meta分析[J]. 临床荟萃, 2022, 37(1): 14-19. |
[12] | 杨瑞, 刘宇宏. 类风湿关节炎患者血脂水平与心血管疾病风险相关研究进展[J]. 临床荟萃, 2022, 37(1): 92-96. |
[13] | 叶蒙蒙, 李旎, 徐国栋, 邵国丰. miR-361在心血管疾病的研究进展[J]. 临床荟萃, 2021, 36(9): 843-849. |
[14] | 卢昊阳, 卢家忠, 韩明锋, 吕新才, 张标, 戎成振, 贾蕾蕾, 潘强强, 马蕾蕾, 赵韧. 新型冠状病毒肺炎合并心血管疾病的临床治疗观察[J]. 临床荟萃, 2021, 36(3): 203-207. |
[15] | 简郭进, 张斌. 沙库巴曲缬沙坦在心血管疾病中的研究进展[J]. 临床荟萃, 2021, 36(11): 1041-1045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||