临床荟萃 ›› 2021, Vol. 36 ›› Issue (9): 843-849.doi: 10.3969/j.issn.1004-583X.2021.09.016
收稿日期:
2021-05-05
出版日期:
2021-09-20
发布日期:
2021-10-05
通讯作者:
邵国丰
E-mail:sgf1958@sina.com
基金资助:
Received:
2021-05-05
Online:
2021-09-20
Published:
2021-10-05
摘要:
微小RNA(microRNA, miRNA)是一类内源性单链非编码RNA分子,长度约21~23个核苷酸,通过结合靶基因的3'非翻译区转录调控基因的表达,参与细胞增殖、分化、凋亡等生物学活动,对机体内不同组织细胞的生长、发育产生重要影响。随着近几年对miRNA-361的深入研究,发现miRNA-361在心血管方面具有重要作用,并影响疾病的发展及预后。本文通过总结miR-361在心血管疾病如动脉粥样硬化(AS)、急性心肌梗死(AMI)、血管瘤(HA)、肺动脉高压(PAH)、 静脉血栓栓塞症(VTE)、盐敏感高血压(SSH)等的表现,对近几年miR-361的相关机制与最新进展进行综述,期望未来能在miR-361方面为心血管疾病的预防、诊断和治疗带来新的启发。
中图分类号:
叶蒙蒙, 李旎, 徐国栋, 邵国丰. miR-361在心血管疾病的研究进展[J]. 临床荟萃, 2021, 36(9): 843-849.
疾病类型 | 相关通路 | ceRNA | 靶基因 | 生物学功能 |
---|---|---|---|---|
AS | APJ/PKCa JAK2/STAT3 | MALAT1 MEG3 | LPL Sirt1 SOCS3 SH2B1 ABCA1 | 参与糖、脂质代谢、细胞增殖转移,抑制炎症因子 |
AMI | 未知 | MEG3 | PHB1 VEGF BCL2/BAX p53 | 参与血管生成、细胞增殖转移、抑制凋亡,影响线粒体功能 |
HA HHT CCM | TGFβ/BMP | NEAT1 | VEGFA IGF1 RAC1 CCM2 | 参与血管生成、细胞增殖转移、细胞外基质降解 |
PAH | JAK/STAT3 | 未知 | SERT VEGF ABCA1 | 参与血管重塑、脂质代谢、细胞增殖转移 |
VTE | TGFβ1/2 | 未知 | FGF1 | 参与血管生成、细胞增殖转移 |
SSH | 未知 | OTX1-7:1 | PRKCA | 参与钙信号、血管平滑肌收缩、钠重吸收,调控钠离子转运体 |
表1 心血管疾病中miR-361的功能及靶基因
疾病类型 | 相关通路 | ceRNA | 靶基因 | 生物学功能 |
---|---|---|---|---|
AS | APJ/PKCa JAK2/STAT3 | MALAT1 MEG3 | LPL Sirt1 SOCS3 SH2B1 ABCA1 | 参与糖、脂质代谢、细胞增殖转移,抑制炎症因子 |
AMI | 未知 | MEG3 | PHB1 VEGF BCL2/BAX p53 | 参与血管生成、细胞增殖转移、抑制凋亡,影响线粒体功能 |
HA HHT CCM | TGFβ/BMP | NEAT1 | VEGFA IGF1 RAC1 CCM2 | 参与血管生成、细胞增殖转移、细胞外基质降解 |
PAH | JAK/STAT3 | 未知 | SERT VEGF ABCA1 | 参与血管重塑、脂质代谢、细胞增殖转移 |
VTE | TGFβ1/2 | 未知 | FGF1 | 参与血管生成、细胞增殖转移 |
SSH | 未知 | OTX1-7:1 | PRKCA | 参与钙信号、血管平滑肌收缩、钠重吸收,调控钠离子转运体 |
[1] |
Grisar JC, Haddad F, Gomari FA, et al. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent[J]. Biomark Med, 2011, 5(6):731-744.
doi: 10.2217/bmm.11.92 URL |
[2] |
Tiwari A, Mukherjee B, Dixit M. MicroRNA key to angiogenesis regulation: miRNA biology and therapy[J]. Curr Cancer Drug Targets, 2018, 18(3):266-277.
doi: 10.2174/1568009617666170630142725 pmid: 28669338 |
[3] |
Kanitz A, Imig J, Dziunycz PJ, et al. The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma[J]. PLoS One, 2012, 7(11):e49568.
doi: 10.1371/journal.pone.0049568 URL |
[4] |
Liu D, Tao T, Xu B, et al. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6)[J]. Biochem Biophys Res Commun, 2014, 445(1):151-156.
doi: 10.1016/j.bbrc.2014.01.140 URL |
[5] |
Liu J, Yang J, Yu L, et al. miR-361-5p inhibits glioma migration and invasion by targeting SND1[J]. Onco Targets Ther, 2018, 11(1):5239-5252.
doi: 10.2147/OTT URL |
[6] |
Hou XW, Sun X, Yu Y, et al. miR-361-5p suppresses lung cancer cell lines progression by targeting FOXM1[J]. Neoplasma, 2017, 64(4):526-534.
doi: 10.4149/neo_2017_406 pmid: 28485158 |
[7] |
Liu B, Lu B, Wang X, et al. MiR-361-5p inhibits cell proliferation and induces cell apoptosis in retinoblastoma by negatively regulating CLDN8[J]. Childs Nerv Syst, 2019, 35(8):1303-1311.
doi: 10.1007/s00381-019-04199-9 URL |
[8] |
Ma F, Zhang L, Ma L, et al. MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1[J]. J Exp Clin Cancer Res, 2017, 36(1):158.
doi: 10.1186/s13046-017-0630-1 URL |
[9] |
Gao F, Feng J, Yao H, et al. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):776-782.
doi: 10.1080/21691401.2019.1577883 URL |
[10] |
Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489[J]. Circ Res, 2014, 114(9):1377-1388.
doi: 10.1161/CIRCRESAHA.114.302476 pmid: 24557880 |
[11] |
Dorn GW 2nd, Matkovich SJ. Menage a Trois: Intimate relationship among a microRNA, long noncoding RNA, and mRNA[J]. Circ Res, 2014, 114(9):1362-1365.
doi: 10.1161/CIRCRESAHA.114.303786 URL |
[12] |
Wang J, Uryga AK, Reinhold J, et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability[J]. Circulation, 2015, 132(20):1909-1919.
doi: 10.1161/CIRCULATIONAHA.115.016457 URL |
[13] |
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3):341-355.
doi: 10.1016/j.cell.2011.04.005 URL |
[14] |
Zhang X, Ye Q, Gong D, et al. Apelin-13 inhibits lipoprotein lipase expression via the APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophage-derived foam cells[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(6):530-540.
doi: 10.1093/abbs/gmx038 URL |
[15] | Ricart JD, Cejudo MP, Peinado OJ, et al. Changes in lipoprotein lipase modulate tissue energy supply during stress[J]. J Appl Physiol(1985), 2005, 99(4):1343-1351. |
[16] |
Zhang Z, Liu X, Xu H, et al. Obesity-induced upregulation of miR-361-5p promotes hepatosteatosis through targeting Sirt1[J]. Metabolism, 2018, 88:31-39.
doi: 10.1016/j.metabol.2018.08.007 URL |
[17] | Huang K, Yu X, Yu Y, et al. Long noncoding RNA MALAT1 promotes high glucose-induced inflammation and apoptosis of vascular endothelial cells by regulating miR-361-3p/SOCS3 axis[J]. Int J Clin Exp Pathol, 2020, 13(5):1243-1252. |
[18] |
Giardina S, Hernández AP, Díaz L, et al. Changes in circulating miRNAs in healthy overweight and obese subjects: Effect of diet composition and weight loss[J]. Clin Nutr, 2019, 38(1):438-443.
doi: S0261-5614(17)31412-7 pmid: 29233588 |
[19] |
Wang P, Xu TY, Guan YF, et al. Vascular smooth muscle cell apoptosis is an early trigger for hypothyroid atherosclerosis[J]. Cardiovasc Res, 2014, 102(3):448-459.
doi: 10.1093/cvr/cvu056 pmid: 24604622 |
[20] |
Willis AI, Pierre PD, Sumpio BE, et al. Vascular smooth muscle cell migration: Current research and clinical implications[J]. Vasc Endovascular Surg, 2014, 38(1):11-23.
doi: 10.1177/153857440403800102 URL |
[21] | Wang M, Li C, Zhang Y, et al. LncRNA MEG3-derived miR-361-5p regulate vascular smooth muscle cells proliferation and apoptosis by targeting ABCA1[J]. Am J Transl Res, 2019, 11(6):3600-3609. |
[22] |
Castiglioni S, Monti M, Arnaboldi L, et al. ABCA1 and HDL are required to modulate smooth muscle cells phenotypic switch after cholesterol loading[J]. Atherosclerosis, 2017, 266(1):8-15.
doi: 10.1016/j.atherosclerosis.2017.09.012 URL |
[23] |
Bochem AE, Valk FM, Tolani S, Increased systemic and plaque inflammation in ABCA1 mutation carriers with attenuation by statins[J]. Arterioscler Thromb Vasc Biol, 2015, 35(7):1663-1669.
doi: 10.1161/ATVBAHA.114.304959 URL |
[24] |
Li C, Guo R, Lou J, et al. The transcription levels of ABCA1, ABCG1 and SR-BI are negatively associated with plasma CRP in Chinese populations with various risk factors for atherosclerosis[J]. Inflammation, 2012, 35(5):1641-1648.
doi: 10.1007/s10753-012-9479-9 URL |
[25] |
Mulas MF, Maxia A, Dessì S, et al. Cholesterol esterification as a mediator of proliferation of vascular smooth muscle cells and peripheral blood mononuclear cells during atherogenesis[J]. J Vasc Res, 2014, 51(1):14-26.
doi: 10.1159/000355218 URL |
[26] |
He C, Chen Y, Liu C, et al. Mitofusin 2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2013, 33(2):212-218.
doi: 10.1007/s11596-013-1099-6 URL |
[27] |
Zhang X, Shao R, Gao W, et al. Inhibition of miR-361-5p suppressed pulmonary artery smooth muscle cell survival and migration by targeting ABCA1 and inhibiting the JAK2/STAT3 pathway[J]. Exp Cell Res, 2018, 363(2):255-261.
doi: 10.1016/j.yexcr.2018.01.015 URL |
[28] |
White HD, Chew DP. Acute myocardial infarction[J]. Lancet, 2018, 372(9638):570-584.
doi: 10.1016/S0140-6736(08)61237-4 URL |
[29] |
Wang F, Long G, Zhao C, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction[J]. PLoS One, 2014, 9(9):e105734.
doi: 10.1371/journal.pone.0105734 URL |
[30] | 王明辉. LncRNA MEG3及miRNA-361-5p在冠状动脉粥样硬化中的作用及机制[D]. 天津:天津医科大学, 2019:38-58. |
[31] |
Su J, Fang M, Tian B, et al. Atorvastatin protects cardiac progenitor cells from hypoxia-induced cell growth inhibition via MEG3/miR-22/HMGB1 pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(12):1257-1265.
doi: 10.1093/abbs/gmy133 URL |
[32] |
Li X, Zhao J, Geng J, et al. Long non-coding RNA MEG3 knockdown attenuates endoplasmic reticulum stress-mediated apoptosis by targeting p53 following myocardial infarction[J]. J Cell Mol Med, 2019, 23(12):8369-8380.
doi: 10.1111/jcmm.v23.12 URL |
[33] |
Marzetti E, Calvani R, Cesari M, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials[J]. Int J Biochem Cell Biol, 2013, 45(10):2288-2301.
doi: 10.1016/j.biocel.2013.06.024 URL |
[34] | Su B, Wang X, Zheng L, et al. Abnormal mitochondrial dynamics and neurodegenerative diseases[J]. Biochim Biophys Acta, 2010, 1802(1):135-142. |
[35] |
Wang W, Li L, Lin WL, et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons[J]. Hum Mol Genet, 2013, 22(23):4706-4719.
doi: 10.1093/hmg/ddt319 URL |
[36] |
Wang K, Liu CY, Zhang XJ, et al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury[J]. Cell Death Differ, 2015, 22(6):1058-1068.
doi: 10.1038/cdd.2014.200 pmid: 25501599 |
[37] |
Wang K, Sun T, Li N, et al. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361[J]. PLoS Genet, 2014, 10(7):e1004467.
doi: 10.1371/journal.pgen.1004467 URL |
[38] |
Wang HW, Lo HH, Chiu YL, et al. Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease[J]. PLoS One, 2014, 9(5):e98070.
doi: 10.1371/journal.pone.0098070 URL |
[39] | Xie Y, Yao FL, Li X. MicroRNA-361 regulates apoptosis of cardiomyocytes after ischemic-reperfusion injury[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12):5413-5421. |
[40] | Zhong Z, Zhong W, Zhang Q, et al. Circulating microRNA expression profiling and bioinformatics analysis of patients with coronary artery disease by RNA sequencing[J]. J Clin Lab Anal, 2020, 34(1):e23020. |
[41] |
Su M, Niu Y, Dang Q, et al. Circulating microRNA profiles based on direct S-Poly(T)Plus assay for detection of coronary heart disease[J]. J Cell Mol Med, 2020, 24(11):5984-5997.
doi: 10.1111/jcmm.v24.11 URL |
[42] |
Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm-is inflammation a common denominator?[J]. FEBS J, 2016, 283(9):1636-1652.
doi: 10.1111/febs.13634 pmid: 26700480 |
[43] |
Yu X, Liu X, Wang R, et al. Long non-coding RNA NEAT1 promotes the progression of hemangioma via the miR-361-5p/VEGFA pathway[J]. Biochem Biophys Res Commun, 2019, 512(4):825-831.
doi: 10.1016/j.bbrc.2019.03.084 URL |
[44] |
Airhart N, Brownstein BH, Cobb JP, et al. Smooth muscle cells from abdominal aortic aneurysms are unique and can independently and synergistically degrade insoluble elastin[J]. J Vasc Surg, 2014, 60(4): 1033-1041; discussion 1041-1042.
doi: 10.1016/j.jvs.2013.07.097 pmid: 24080131 |
[45] | Yin RR, Hao D, Chen P. Expression and correlation of MMP-9, VEGF, and p16 in infantile hemangioma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15):4806-4811. |
[46] |
Donaldson JW, McKeever TM, Hall IP, et al. The UK prevalence of hereditary haemorrhagic telangiectasia and its association with sex, socioeconomic status and region of residence: A population-based study[J]. Thorax, 2014, 69(2):161-167.
doi: 10.1136/thoraxjnl-2013-203720 pmid: 24188926 |
[47] |
Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels[J]. Arterioscler Thromb Vasc Biol, 2004, 24(3):435-44.
pmid: 14604834 |
[48] |
Bach Leon A. Endothelial cells and the IGF system[J]. J Mol Endocrinol, 2015, 54(1):R1-13.
doi: 10.1530/JME-14-0215 URL |
[49] | Friedrich CC, Lin Y, Krannich A, et al. Enhancing engineered vascular networks in vitro and in vivo: The effects of IGF1 on vascular development and durability[J]. Cell Prolif, 2018, 51(1): undefined. |
[50] |
Zawistowski JS, Stalheim L, Uhlik MT, et al. CCM1 and CCM2 protein interactions in cell signaling: Implications for cerebral cavernous malformations pathogenesis[J]. Hum Mol Genet, 2005, 14(17):2521-2531.
pmid: 16037064 |
[51] |
Kar S, Bali Kiran K, Baisantry A, et al. Genome-wide sequencing reveals micrornas downregulated in cerebral cavernous malformations[J]. J Mol Neurosci, 2017, 61(2):178-188.
doi: 10.1007/s12031-017-0880-6 URL |
[52] | Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension[J]. Rev Esp Cardiol (Engl Ed), 2016, 69(2):177. |
[53] |
Zhang Y, Chen Y, Chen G, et al. Upregulation of miR-361-3p suppresses serotonin-induced proliferation in human pulmonary artery smooth muscle cells by targeting SERT[J]. Cell Mol Biol Lett, 2020, 25:45.
doi: 10.1186/s11658-020-00237-6 pmid: 33061998 |
[54] |
Dal Monte M, Landi D, Martini D, et al. Antiangiogenic role of miR-361 in human umbilical vein endothelial cells: functional interaction with the peptide somatostatin[J]. Naunyn Schmiedebergs Arch Pharmacol, 2013, 386(1):15-27.
doi: 10.1007/s00210-012-0808-1 URL |
[55] |
Wei C, Henderson H, Spradley C, et al. Circulating miRNAs as potential marker for pulmonary hypertension[J]. PLoS One, 2013, 8(5):e64396.
doi: 10.1371/journal.pone.0064396 URL |
[56] |
Shiraev TP, Omari A, Rushworth RL. Trends in pulmonary embolism morbidity and mortality in Australia[J]. Thromb Res, 2013, 132(1):19-25.
doi: 10.1016/j.thromres.2013.04.032 URL |
[57] |
Wang W, Zhu X, Du X, et al. MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1[J]. Microvasc Res, 2019, 123(1):35-41.
doi: 10.1016/j.mvr.2018.10.003 URL |
[58] |
Ozkok A, Yildiz A. Endothelial Progenitor Cells and Kidney Diseases[J]. Kidney Blood Press Res, 2018, 43(3):701-718.
doi: 10.1159/000489745 URL |
[59] | Yang X, Song Y, Sun Y, et al. Down-regulation of miR-361-5p promotes the viability, migration and tube formation of endothelial progenitor cells via targeting FGF1[J]. Biosci Rep, 2020, 40(10):BSR20200557. |
[60] |
Wang X, Sundquist K, Svensson PJ, et al. Association of recurrent venous thromboembolism and circulating microRNAs[J]. Clin Epigenetics, 2019, 11(1):28.
doi: 10.1186/s13148-019-0627-z URL |
[61] | 牟建军, 任珂宇. 盐敏感性高血压的诊断和机制[J]. 诊断学理论与实践, 2012, 11(6):543-546. |
[62] |
Kelly TN, He J. Genomic epidemiology of blood pressure salt sensitivity[J]. J Hypertens, 30(5):861-873.
doi: 10.1097/HJH.0b013e3283524949 URL |
[63] |
Qi H, Liu Z, Liu B, et al. micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension[J]. Medicine (Baltimore), 2017, 96(17):e6417.
doi: 10.1097/MD.0000000000006417 URL |
[64] |
Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012, 40(1):D109-114.
doi: 10.1093/nar/gkr988 URL |
[1] | 顾天舒, 梁雪, 蔡嘉庚, 李广平. m6A RNA甲基化修饰在心血管疾病中的进展[J]. 临床荟萃, 2023, 38(8): 743-748. |
[2] | 李志勇, 李星. 多模态超声在高血压患者大脑中动脉狭窄筛查中的临床价值[J]. 临床荟萃, 2023, 38(7): 613-617. |
[3] | 吕丽丽, 翟满满, 丁小艳, 陈永清. 线粒体转录因子A介导的线粒体功能障碍在糖尿病心肌病中的作用[J]. 临床荟萃, 2023, 38(5): 465-468. |
[4] | 郭雨, 李永东. ARNI在高血压治疗中的研究进展[J]. 临床荟萃, 2023, 38(2): 181-184. |
[5] | 刘奕, 崔坤, 刘畅, 赵浩天, 李丽, 薛红元. 血清分泌型卷曲蛋白5水平与原发性高血压患者早期肾损害的相关性[J]. 临床荟萃, 2023, 38(12): 1073-1077. |
[6] | 江吉, 朱小刚, 姜山, 达哇扎巴, 岑强. 世居高原高血压人群蛋白尿相关危险因素[J]. 临床荟萃, 2023, 38(12): 1086-1090. |
[7] | 王壮壮, 刘彦廷, 田春雷, 任欢, 艾文兵. 长链非编码RNA在胶质瘤中的研究进展[J]. 临床荟萃, 2023, 38(11): 1053-1056. |
[8] | 徐阳, 薛凌. H型高血压合并2型糖尿病患者轻度认知功能障碍的影响因素[J]. 临床荟萃, 2023, 38(10): 887-892. |
[9] | 杨晓蓉, 周淑红, 潘亮, 郭莉江. 结缔组织病相关肺动脉高压的发病机制及其筛查的研究进展[J]. 临床荟萃, 2023, 38(10): 944-948. |
[10] | 李瑞珍, 李星辉, 曾璟, 姚晓涛, 杨珂欣, 张展. 高血压认知功能障碍机制的研究进展[J]. 临床荟萃, 2023, 38(1): 88-92. |
[11] | 王宁, 李勇. 簇集蛋白在心血管疾病中的研究进展[J]. 临床荟萃, 2022, 37(9): 842-845. |
[12] | 尹贻锟, 尹逊伟, 王佳林, 孙君志. 太极拳锻炼周期对原发性高血压的血压及心血管危险因素的影响:系统性评价和Meta分析[J]. 临床荟萃, 2022, 37(7): 599-606. |
[13] | 张怡, 崔晓冉, 杨晓红. 单核细胞/高密度脂蛋白胆固醇比值在心血管疾病中研究进展[J]. 临床荟萃, 2022, 37(6): 551-555. |
[14] | 尹惠阳, 蔺雪峰, 韩轩茂. 蛋白激酶B通路、乙酰肝素酶、NADPH氧化酶在心肌缺血再灌注损伤中的作用及相互关系的研究进展[J]. 临床荟萃, 2022, 37(5): 459-462. |
[15] | 邱建美, 王德峰. 恩格列净治疗2型糖尿病的研究现状[J]. 临床荟萃, 2022, 37(2): 170-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||