临床荟萃 ›› 2023, Vol. 38 ›› Issue (1): 88-92.doi: 10.3969/j.issn.1004-583X.2023.01.015
李瑞珍1, 李星辉2(), 曾璟3, 姚晓涛1, 杨珂欣4, 张展1
收稿日期:
2022-09-14
出版日期:
2023-01-20
发布日期:
2023-03-03
通讯作者:
李星辉
E-mail:xinghui415@163.com
基金资助:
Received:
2022-09-14
Online:
2023-01-20
Published:
2023-03-03
摘要:
随着对高血压的研究深入,发现高血压可导致患者出现认知功能障碍,从而影响患者生存质量。研究表明,高血压与认知功能障碍间的病理生理机制较为复杂,高血压可能通过破坏脑血管内皮功能、促进脑血管重塑等导致脑血管结构和功能的改变,从而引起认知功能障碍。本文通过对高血压认知功能障碍机制的最新研究进展进行综述,以期为临床上高血压认知功能障碍的诊治提供理论依据。
中图分类号:
李瑞珍, 李星辉, 曾璟, 姚晓涛, 杨珂欣, 张展. 高血压认知功能障碍机制的研究进展[J]. 临床荟萃, 2023, 38(1): 88-92.
[1] |
Muntner P, Carey RM, Gidding S, et al. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline[J]. Circulation, 2018, 137(2): 109-118.
doi: 10.1161/CIRCULATIONAHA.117.032582 pmid: 29133599 |
[2] |
Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging[J]. Cell Stem Cell, 2018, 22(4): 589-599.e5.
doi: S1934-5909(18)30121-8 pmid: 29625071 |
[3] |
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
doi: 10.1016/S2468-2667(20)30185-7 pmid: 33271079 |
[4] |
Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: A systematic review and meta-analysis[J]. JAMA, 2020, 323(19): 1934-1944.
doi: 10.1001/jama.2020.4249 pmid: 32427305 |
[5] |
Zhou R, Wei S, Wang Y, et al. Pulse pressure is associated with rapid cognitive decline over 4 years: A population-based cohort study[J]. Brain Sci, 2022, 12(12):1691.
doi: 10.3390/brainsci12121691 URL |
[6] |
Webb AJS, Lawson A, Wartolowska K, et al. Aortic stiffness, pulse pressure, and cerebral pulsatility progress despite best medical management: The OXVASC cohort[J]. Stroke, 2022, 53(4): 1310-1317.
doi: 10.1161/STROKEAHA.121.035560 URL |
[7] |
Mahinrad S, Sorond FA, Gorelick PB. Hypertension and cognitive dysfunction: A review of mechanisms, life-course observational studies and clinical trial results[J]. Rev Cardiovasc Med, 2021, 22(4): 1429-1449.
doi: 10.31083/j.rcm2204148 URL |
[8] |
Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension[J]. Circ Res, 2019, 124(7): 1025-1044.
doi: 10.1161/CIRCRESAHA.118.313260 pmid: 30920929 |
[9] |
Muhire G, Iulita MF, Vallerand D, et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits[J]. J Am Heart Assoc, 2019, 8(9): e011630.
doi: 10.1161/JAHA.118.011630 URL |
[10] |
Faraco G, Sugiyama Y, Lane D, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension[J]. J Clin Invest, 2016, 126(12): 4674-4689.
doi: 86950 pmid: 27841763 |
[11] |
Wiedenhoeft T, Tarantini S, Nyúl-Tóth Á, et al. Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice[J]. Geroscience, 2019, 41(6): 711-725.
doi: 10.1007/s11357-019-00102-1 pmid: 31654270 |
[12] |
Tarantini S, Yabluchanskiy A, Csipo T, et al. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging[J]. Geroscience, 2019, 41(5): 533-542.
doi: 10.1007/s11357-019-00101-2 pmid: 31679124 |
[13] |
Liang ES, Bai WW, Wang H, et al. PARP-1 (poly[ADP-ribose] polymerase 1) inhibition protects from Ang II (angiotensin II)-induced abdominal aortic aneurysm in mice[J]. Hypertension, 2018, 72(5): 1189-1199.
doi: 10.1161/HYPERTENSIONAHA.118.11184 URL |
[14] |
Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice[J]. Aging Cell, 2018, 17(2):e12731.
doi: 10.1111/acel.12731 URL |
[15] |
Power MC, Schneider AL, Wruck L, et al. Life-course blood pressure in relation to brain volumes[J]. Alzheimers Dement, 2016, 12(8): 890-899.
doi: 10.1016/j.jalz.2016.03.012 pmid: 27139841 |
[16] |
Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: From pathophysiology to public health[J]. Nat Rev Nephrol, 2021, 17(10): 639-654.
doi: 10.1038/s41581-021-00430-6 pmid: 34127835 |
[17] |
Mahinrad S, Shownkeen M, Sedaghat S, et al. Vascular health across young adulthood and midlife cerebral autoregulation, gait, and cognition[J]. Alzheimers Dement, 2021, 17(5): 745-754.
doi: 10.1002/alz.12246 pmid: 33283978 |
[18] |
Kangussu LM, Rocha NP, Valadão PAC, et al. Renin-aangiotensin system in Huntington's disease: Evidence from animal models and human patients[J]. Int J Mol Sci, 2022, 23(14): 7686.
doi: 10.3390/ijms23147686 URL |
[19] |
Jackson L, Eldahshan W, Fagan SC, et al. Within the brain: The renin angiotensin system[J]. Int J Mol Sci, 2018, 19(3):876.
doi: 10.3390/ijms19030876 URL |
[20] |
Fouda AY, Fagan SC, Ergul A. Brain vasculature and cognition[J]. Arterioscler Thromb Vasc Biol, 2019, 39(4): 593-602.
doi: 10.1161/ATVBAHA.118.311906 pmid: 30816798 |
[21] |
Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: A review[J]. Curr Hypertens Rep, 2017, 19(3): 24.
doi: 10.1007/s11906-017-0724-3 pmid: 28299725 |
[22] |
Ungvari Z, Tarantini S, Nyúl-Tóth Á, et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: From increased cellular senescence to the pathogenesis of age-related vascular diseases[J]. Geroscience, 2019, 41(6): 727-738.
doi: 10.1007/s11357-019-00107-w pmid: 31655958 |
[23] |
Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(7): 853-863.
doi: 10.1093/gerona/glx177 URL |
[24] |
Fulop GA, Kiss T, Tarantini S, et al. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation[J]. Geroscience, 2018, 40(5-6): 513-521.
doi: 10.1007/s11357-018-0047-6 pmid: 30470983 |
[25] |
Kerkhofs D, van Hagen BT, Milanova IV, et al. Pharmacological depletion of microglia and perivascular macrophages prevents vascular cognitive impairment in Ang II-induced hypertension[J]. Theranostics, 2020, 10(21): 9512-9527.
doi: 10.7150/thno.44394 pmid: 32863942 |
[26] |
Yang Y, Kimura-Ohba S, Thompson JF, et al. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury[J]. Neurobiol Dis, 2018, 114: 95-110.
doi: S0969-9961(18)30044-5 pmid: 29486300 |
[27] |
Santisteban MM, Ahn SJ, Lane D, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension[J]. Hypertension, 2020, 76(3): 795-807.
doi: 10.1161/HYPERTENSIONAHA.120.15581 pmid: 32654560 |
[28] |
Fulop GA, Ahire C, Csipo T, et al. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice[J]. Geroscience, 2019, 41(5): 575-589.
doi: 10.1007/s11357-019-00110-1 pmid: 31691147 |
[29] |
Miyanohara J, Kakae M, Nagayasu K, et al. TRPM2 channel aggravates CNS inflammation and cognitive impairment via activation of microglia in chronic cerebral hypoperfusion[J]. J Neurosci, 2018, 38(14): 3520-3533.
doi: 10.1523/JNEUROSCI.2451-17.2018 pmid: 29507145 |
[30] | 吴荣兴, 廖仁引, 周卫国, 等. SWI评估老年高血压患者脑微出血与认知功能障碍的相关性研究[J]. 现代医用影像学, 2022, 31(10): 1857-1860. |
[31] |
Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities[J]. Alzheimers Dement (N Y), 2019, 5: 107-117.
doi: 10.1016/j.trci.2019.02.001 pmid: 31011621 |
[32] |
Low A, Prats-Sedano MA, Stefaniak JD, et al. CAIDE dementia risk score relates to severity and progression of cerebral small vessel disease in healthy midlife adults: The PREVENT-Dementia study[J]. J Neurol Neurosurg Psychiatry, 2022, 93(5): 481-490.
doi: 10.1136/jnnp-2021-327462 pmid: 35135868 |
[33] |
Xu W, Bai Q, Dong Q, et al. Blood-brain barrier dysfunction and the potential mechanisms in chronic cerebral hypoperfusion induced cognitive impairment[J]. Front Cell Neurosci, 2022, 16: 870674.
doi: 10.3389/fncel.2022.870674 URL |
[34] |
Guevarra AC, Ng SC, Saffari SE, et al. Age moderates associations of hypertension, white matter hyperintensities, and cognition[J]. J Alzheimers Dis, 2020, 75(4): 1351-1360.
doi: 10.3233/JAD-191260 pmid: 32417773 |
[35] | 王晓旭. 高血压患者脑白质病变与认知障碍的相关性[J]. 慢性病学杂志, 2022, 23(10): 1494-1497. |
[36] |
Ingo C, Kurian S, Higgins J, et al. Vascular health and diffusion properties of normal appearing white matter in midlife[J]. Brain Commun, 2021, 3(2): fcab080.
doi: 10.1093/braincomms/fcab080 URL |
[37] |
Weaver NA, Doeven T, Barkhof F, et al. Cerebral amyloid burden is associated with white matter hyperintensity location in specific posterior white matter regions[J]. Neurobiol Aging, 2019, 84: 225-234.
doi: S0197-4580(19)30279-9 pmid: 31500909 |
[38] |
Chen X, Chen L, Lin G, et al. White matter damage as a consequence of vascular dysfunction in a spontaneous mouse model of chronic mild chronic hypoperfusion with eNOS deficiency[J]. Mol Psychiatry, 2022, 27(11): 4754-4769.
doi: 10.1038/s41380-022-01701-9 URL |
[39] |
Breteler MM. Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study[J]. Ann N Y Acad Sci, 2000, 903: 457-465.
doi: 10.1111/j.1749-6632.2000.tb06399.x URL |
[40] |
Jeon SY, Byun MS, Yi D, et al. Influence of hypertension on brain amyloid deposition and Alzheimer's disease signature neurodegeneration[J]. Neurobiol Aging, 2019, 75: 62-70.
doi: S0197-4580(18)30402-0 pmid: 30553154 |
[41] |
Lane CA, Barnes J, Nicholas JM, et al. Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): An epidemiological study[J]. Lancet Neurol, 2019, 18(10): 942-952.
doi: S1474-4422(19)30228-5 pmid: 31444142 |
[42] |
Kim HJ, Park S, Cho H, et al. Assessment of extent and role of tau in subcortical vascular cognitive impairment using 18F-AV1451 positron emission tomography imaging[J]. JAMA Neurol, 2018, 75(8): 999-1007.
doi: 10.1001/jamaneurol.2018.0975 pmid: 29799981 |
[43] | 吴浩, 符丽珍, 赵勇, 等. 老年脑梗死后血管性认知功能障碍的危险因素及与血清同型半胱氨酸、淀粉样蛋白A、Tau蛋白的关系[J]. 实用医院临床杂志, 2022, 19(3): 9-13. |
[44] |
Nyúl-Tóth Á, Tarantini S, Kiss T, et al. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease[J]. Geroscience, 2020, 42(6): 1685-1698.
doi: 10.1007/s11357-020-00256-3 URL |
[45] |
Ma Q, Ineichen BV, Detmar M, et al. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice[J]. Nat Commun, 2017, 8(1): 1434.
doi: 10.1038/s41467-017-01484-6 pmid: 29127332 |
[46] |
Mortensen KN, Sanggaard S, Mestre H, et al. Impaired glymphatic transport in spontaneously hypertensive rats[J]. J Neurosci, 2019, 39(32): 6365-6377.
doi: 10.1523/JNEUROSCI.1974-18.2019 pmid: 31209176 |
[1] | 肖煌怡, 袁建坤, 严梓予, 曾雯姝, 鲁兰莫, 王峻. 认知干预对遗忘型轻度认知障碍老年患者干预效果的meta分析[J]. 临床荟萃, 2024, 39(1): 12-19. |
[2] | 张佳楠, 孙琳琳, 詹潇燕, 李冰. 血清维生素B12与老年2型糖尿病轻度认知功能障碍的关系[J]. 临床荟萃, 2024, 39(1): 34-37. |
[3] | 李志勇, 李星. 多模态超声在高血压患者大脑中动脉狭窄筛查中的临床价值[J]. 临床荟萃, 2023, 38(7): 613-617. |
[4] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[5] | 郭雨, 李永东. ARNI在高血压治疗中的研究进展[J]. 临床荟萃, 2023, 38(2): 181-184. |
[6] | 谢少为, 吕小涵, 董艳红, 吕佩源. 抗炎细胞因子在阿尔茨海默病中的研究进展[J]. 临床荟萃, 2023, 38(2): 185-188. |
[7] | 王璐璐, 董露露, 江超, 王九雪, 常雅君, 王天俊. 弥散张量成像评估帕金森病合并非运动症状患者脑微结构的研究进展[J]. 临床荟萃, 2023, 38(2): 189-192. |
[8] | 刘奕, 崔坤, 刘畅, 赵浩天, 李丽, 薛红元. 血清分泌型卷曲蛋白5水平与原发性高血压患者早期肾损害的相关性[J]. 临床荟萃, 2023, 38(12): 1073-1077. |
[9] | 江吉, 朱小刚, 姜山, 达哇扎巴, 岑强. 世居高原高血压人群蛋白尿相关危险因素[J]. 临床荟萃, 2023, 38(12): 1086-1090. |
[10] | 徐阳, 薛凌. H型高血压合并2型糖尿病患者轻度认知功能障碍的影响因素[J]. 临床荟萃, 2023, 38(10): 887-892. |
[11] | 杨晓蓉, 周淑红, 潘亮, 郭莉江. 结缔组织病相关肺动脉高压的发病机制及其筛查的研究进展[J]. 临床荟萃, 2023, 38(10): 944-948. |
[12] | 姚瑶, 褚敏. 糖尿病肾病患者认知功能障碍与血清β淀粉样蛋白的关系[J]. 临床荟萃, 2022, 37(9): 813-816. |
[13] | 王宁, 李勇. 簇集蛋白在心血管疾病中的研究进展[J]. 临床荟萃, 2022, 37(9): 842-845. |
[14] | 周彦伶, 朱斌斌, 曹盎洋, 罗文君. 虚拟现实技术改善神经认知障碍的研究进展[J]. 临床荟萃, 2022, 37(8): 743-747. |
[15] | 李梓浩, 吴美妮, 尹昌浩, 吴天娇, 赵维纳. 脑电图在轻度认知功能障碍中的研究进展[J]. 临床荟萃, 2022, 37(8): 748-752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||