临床荟萃 ›› 2021, Vol. 36 ›› Issue (10): 874-879.doi: 10.3969/j.issn.1004-583X.2021.10.002
收稿日期:
2021-06-29
出版日期:
2021-10-20
发布日期:
2021-11-10
通讯作者:
赵明峰
E-mail:mingfengzhao@sina.com
作者简介:
赵明峰,天津市第一中心医院血液科主任,主任医师、教授,南开大学、天津医科大学博士研究生导师。中华血液学会红细胞学组委员、天津分会常委。中国中西医结合学会血液学委员会全国委员,天津分会副主委。中国医师协会血液学会全国委员、天津分会常委。中国抗癌协会天津市淋巴瘤专业委员会副主委。中国老年医学会血液学分会全国委员。中国MDS/MPN协作组专家委员会委员。海峡两岸交流协会血液学专业委员会委员。中国民族医药学会血液学委员会常务理事。天津医疗健康学会血液病防治专业委员会副主委。京津冀中西医结合血液病联盟副理事长。天津市“131创新型人才”第一层次人选、首届天津市“津门医学英才”。 基金资助:
Received:
2021-06-29
Online:
2021-10-20
Published:
2021-11-10
Contact:
Zhao Mingfeng
E-mail:mingfengzhao@sina.com
摘要:
急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL)是一组高度异质性的来源于淋巴前体细胞的血液系统恶性克隆性肿瘤。近些年随着危险分层治疗体系的完善及酪氨酸激酶抑制剂、单克隆抗体、嵌合抗原受体T细胞、其它靶向药物等新药的出现,ALL的治疗效果得到了大幅度的提高,本文就ALL的诊疗规范及最新研究进展等有关内容进行简述。
中图分类号:
卢文艺, 赵明峰. 急性淋巴细胞白血病的规范治疗[J]. 临床荟萃, 2021, 36(10): 874-879.
Lu Wenyi, Zhao Mingfeng. The standard treatment of acute lymphoblastic leukemia[J]. Clinical Focus, 2021, 36(10): 874-879.
[1] | NCCN clinical practice guidelines in oncology acute lymphoblastic leukemia. Version 1.2020[R/OL]. [2020-01-15]. |
[2] |
Kruse A, Abdel-Azim N, Kim HN, et al. Minimal residual disease detection in acute lymphoblastic leukemia[J]. Int J Mol Sci, 2020,21(3):1054.
doi: 10.3390/ijms21031054 URL |
[3] |
Short NJ, Jabbour E. Minimal residual disease in acute lymphoblastic leukemia: How to recognize and treat it[J]. Curr Oncol Rep, 2017,19(1):6.
doi: 10.1007/s11912-017-0565-x URL |
[4] | Bassan R, Intermesoli T, Scattolin A, et al. Minimal residual disease assessment and risk-based therapy in acute lymphoblastic leukemia[J]. Clin Lymphoma Myeloma Leuk, 2017,17S:S2-S9. |
[5] |
Zhao XS, Liu YR, Xu LP, et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts[J]. Am J Hematol, 2019,94(5):512-521.
doi: 10.1002/ajh.v94.5 URL |
[6] |
Raff T, Gokbuget N, Luschen S, et al. Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: Data from the GMALL 06/99 and 07/03 trials[J]. Blood, 2007,109(3):910-915.
doi: 10.1182/blood-2006-07-037093 URL |
[7] | 秘营昌. 成人急性淋巴细胞白血病的规范化诊断及治疗[J]. 临床血液学杂志, 2012,25(3):1004-2806. |
[8] | 中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性淋巴细胞白血病诊断与治疗指南(2016年版)[J]. 中华血液学杂志, 2016,37(10):837-845. |
[9] |
Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias[J]. N Engl J Med, 2013,369(19):1783-1796.
doi: 10.1056/NEJMoa1306494 URL |
[10] |
Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: Long-term follow-up of a single-centre, phase 2 study[J]. Lancet Haematol, 2018,5(12):e618-e627.
doi: 10.1016/S2352-3026(18)30176-5 URL |
[11] |
Richards S, Pui CH, Gayon P, et al. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2013,60(2):185-195.
doi: 10.1002/pbc.24228 pmid: 22693038 |
[12] |
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018,378(5):439-448.
doi: 10.1056/NEJMoa1709866 URL |
[13] | Pasquini M, Hu Z, Zhang Y, et al. Real world experience of tisagenlecleucel chimeric antigen receptor (CAR) T-Cells targeting CD19 in patients with acute lymphoblastic leukemia (ALL) and diffuse large B-Cell lymphoma (DLBCL) using the Center for International Blood and Marrow Transplant Research (CIBMTR) cellular therapy (CT) Registry[J]. Clin Lymphoma Myeloma Leuk, 2019,19(Suppl 1):S267. |
[14] |
He X, Xiao X, Li Q, et al. Anti-CD19 CAR-T as a feasible and safe treatment against central nervous system leukemia after intrathecal chemotherapy in adults with relapsed or refractory B-ALL[J]. Leukemia, 2019,33(8):2102-2104.
doi: 10.1038/s41375-019-0437-5 URL |
[15] |
Lu W, Wei Y, Cao Y, et al. CD19 CAR-T cell treatment conferred sustained remission in B-ALL patients with minimal residual disease[J]. Cancer Immunol Immunother, 2021,70(12):3501-3511.
doi: 10.1007/s00262-021-02941-4 URL |
[16] |
Xiao X, He X, Li Q, et al. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: A case report[J]. Clin Cancer Res, 2019,25(1):29-34.
doi: 10.1158/1078-0432.CCR-18-1379 pmid: 30322878 |
[17] |
Wan X, Chen YH, Zhang Y. Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-cell therapy[J]. J Immunother, 2018,41(9):406-410.
doi: 10.1097/CJI.0000000000000243 URL |
[18] |
Chevallier P, Pigneux A, Robillard N, et al. Rituximab for the treatment of adult relapsed/refractory CD20 positive B-ALL patients: A pilot series[J]. Leuk Res, 2012,36(3):311-315.
doi: 10.1016/j.leukres.2011.11.010 URL |
[19] |
Thomas DA, O'Brien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia[J]. J Clin Oncol, 2010,28(24):3880-3889.
doi: 10.1200/JCO.2009.26.9456 URL |
[20] |
Jabbour E, Richard-Carpentier G, Sasaki Y, et al. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: A single-arm, phase 2 trial[J]. Lancet Haematol, 2020,7(7):e523-e533.
doi: 10.1016/S2352-3026(20)30144-7 pmid: 32589978 |
[21] |
Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia[J]. N Engl J Med, 2017,376(9):836-847.
doi: 10.1056/NEJMoa1609783 URL |
[22] |
Martinelli G, Boissel N, Chevallier P, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: Results from a phase Ⅱ, single-arm, multicenter study[J]. J Clin Oncol, 2017,35(16):1795-1802.
doi: 10.1200/JCO.2016.69.3531 pmid: 28355115 |
[23] |
Topp MS, Gokbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia[J]. J Clin Oncol, 2014,32(36):4134-4140.
doi: 10.1200/JCO.2014.56.3247 pmid: 25385737 |
[24] |
Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment[J]. Blood, 2015,126(24):2578-2584.
doi: 10.1182/blood-2015-06-649111 pmid: 26480933 |
[25] |
Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia[J]. Blood, 2018,131(14):1522-1531.
doi: 10.1182/blood-2017-08-798322 URL |
[26] |
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia[J]. N Engl J Med, 2016,375(8):740-753.
doi: 10.1056/NEJMoa1509277 URL |
[27] |
Naik J, Themeli M, de Jong-Korlaar R, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia[J]. Haematologica, 2019,104(3):e100-e103.
doi: 10.3324/haematol.2018.192757 URL |
[28] |
Ofran Y, Ringelstein-Harlev S, Slouzkey I, et al. Daratumumab for eradication of minimal residual disease in high-risk advanced relapse of T-cell/CD19/CD22-negative acute lymphoblastic leukemia[J]. Leukemia, 2020,34(1):293-295.
doi: 10.1038/s41375-019-0548-z URL |
[29] |
Zhang Y, Xue S, Liu F, et al. Daratumumab for quick and sustained remission in post-transplant relapsed/refractory acute lymphoblastic leukemia[J]. Leuk Res, 2020; 91:106332.
doi: 10.1016/j.leukres.2020.106332 URL |
[30] |
Ganzel C, Kharit M, Duksin C, et al. Daratumumab for relapsed/refractory Philadelphia-positive acute lymphoblastic leukemia[J]. Haematologica, 2018,103(10):e489-e490.
doi: 10.3324/haematol.2018.197640 URL |
[31] |
Chonghaile TN, Roderick JE, Glenfield C, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199[J]. Cancer Discov, 2014,4(9):1074-1087.
doi: 10.1158/2159-8290.CD-14-0353 pmid: 24994123 |
[32] | Leonard JT, Rowley JS, Eide CA, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Sci Transl Med, 2016, 8(354):354ra114. |
[33] |
Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma[J]. Cancer Discov, 2021,11(6):1440-1453.
doi: 10.1158/2159-8290.CD-20-1465 URL |
[34] |
Jain N, Stevenson KE, Winer ES, et al. A multicenter phase Ⅰ study combining venetoclax with mini-hyper-CVD in older adults with untreated and relapsed/refractory acute lymphoblastic leukemia[J]. Blood, 2019,134(Suppl 1):3867.
doi: 10.1182/blood-2019-129988 URL |
[35] | Horton TM, Whitlock JA, Lu X, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: A report from the Children's Oncology Group[J]. Br J Haematol, 2019,186(2):274-285. |
[36] |
Bertaina A, Vinti L, Strocchio L, et al. The combination of bortezomib with chemotherapy to treat relapsed/refractory acute lymphoblastic leukaemia of childhood[J]. Br J Haematol, 2017,176(4):629-636.
doi: 10.1111/bjh.2017.176.issue-4 URL |
[37] |
Hasegawa D, Yoshimoto Y, Kimura S, et al. Bortezomib-containing therapy in Japanese children with relapsed acute lymphoblastic leukemia[J]. Int J Hematol, 2019,110(5):627-634.
doi: 10.1007/s12185-019-02714-x pmid: 31401767 |
[38] |
Burke MJ, Ziegler DS, Sirvent F, et al. Phase 1b study of carfilzomib in combination with induction chemotherapy in children with relapsed or refractory acute lymphoblastic leukemia (ALL)[J]. Blood, 2019,134(Suppl 1):3873.
doi: 10.1182/blood-2019-127350 URL |
[39] | Fisch SC, Jonas BA, Tuscano J, et al. Phase I study of escalating doses of carfilzomib with Hyper-CVAD in patients with newly diagnosed acute lymphoblastic leukemia[J]. Am J Hematol, 2019,134(Suppl 1):3884. |
[1] | 刘丽丽, 袁宇婷, 赖耿良, 田川, 蓝翔, 叶中绿. 儿童急性淋巴细胞白血病第15天微小残留与预后的关系[J]. 临床荟萃, 2024, 39(1): 47-52. |
[2] | 董整荣, 陶千山, 沈元元, 董毅. 163例急性早幼粒细胞白血病患者随访结果分析[J]. 临床荟萃, 2023, 38(9): 813-818. |
[3] | 杜佳宜, 刘丽丽, 何永忠, 田川, 蓝翔, 叶中绿. 儿童急性淋巴细胞白血病化疗期间严重不良事件临床观察[J]. 临床荟萃, 2023, 38(2): 149-154. |
[4] | 王壮壮, 刘彦廷, 田春雷, 任欢, 艾文兵. 长链非编码RNA在胶质瘤中的研究进展[J]. 临床荟萃, 2023, 38(11): 1053-1056. |
[5] | 陈璨, 黄永芬, 苗雨青. 老年急性髓样白血病的治疗进展[J]. 临床荟萃, 2023, 38(10): 954-960. |
[6] | 张月月, 谢美芳, 孙艮. 类风湿关节炎合并T-细胞大颗粒淋巴细胞白血病1例及文献复习[J]. 临床荟萃, 2022, 37(8): 728-732. |
[7] | 茆蓉, 陶千山, 沈元元, 董毅. 结外NK/T细胞淋巴瘤相关噬血细胞综合征1例[J]. 临床荟萃, 2022, 37(7): 635-639. |
[8] | 尹玲玲, 吴文健, 朱锋. 急性髓系白血病转换为急性淋巴细胞白血病1例并文献复习[J]. 临床荟萃, 2022, 37(11): 1025-1030. |
[9] | 刘建宁, 孙立, 牛志云, 温树鹏, 王颖, 张学军, 王福旭. PD-1在急性白血病异基因造血干细胞移植后T淋巴细胞的表达[J]. 临床荟萃, 2021, 36(3): 251-255. |
[10] | 黄嘉惠, 叶中绿. 儿童白血病合并多重耐药菌感染的研究进展[J]. 临床荟萃, 2021, 36(2): 188-192. |
[11] | 沈子园, 康海全, 桑威, 闫冬梅. 白血病合并感染患者细菌分布、耐药情况及死亡危险因素分析[J]. 临床荟萃, 2021, 36(12): 1092-1096. |
[12] | 马瑞, 孙于谦. 单倍型相合移植规范化治疗急性白血病[J]. 临床荟萃, 2021, 36(10): 869-873. |
[13] | 刘巧雪, 魏辉. 急性髓细胞白血病的规范化治疗[J]. 临床荟萃, 2021, 36(10): 880-883. |
[14] | 秦亚溱. 慢性髓性白血病患者BCR-ABL融合基因的规范化检测及临床应用[J]. 临床荟萃, 2021, 36(10): 884-888. |
[15] | 王卉, 陈曼. 流式细胞术检测急性髓系白血病微小残留病的现状与进展[J]. 临床荟萃, 2021, 36(10): 889-895. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||