临床荟萃 ›› 2021, Vol. 36 ›› Issue (12): 1139-1143.doi: 10.3969/j.issn.1004-583X.2021.12.018
收稿日期:
2021-08-06
出版日期:
2021-12-20
发布日期:
2021-12-24
通讯作者:
张志华
E-mail:zzhangzhihua@163.com
Received:
2021-08-06
Online:
2021-12-20
Published:
2021-12-24
摘要:
原发免疫性血小板减少症(primary immune thrombocytopenia, ITP)是临床上最常见的出血性疾病,以血小板计数减少和出血风险增加为主要特征。多数患者表现为皮肤黏膜出血,重症患者可因内脏出血或颅内出血而死亡。大量研究发现,ITP是在易感基因遗传背景下由于环境因素诱发自身免疫反应所致。由于ITP患者存在诸多遗传基因的异常,如酶基因多态性、调节基因多态性等, 基因多态性被广泛地应用于ITP患者发病机制的描述。本文就ITP的遗传易感基因的研究进展做一综述,旨在深入了解ITP的发病机制,为诊断、治疗提供依据及思路。
中图分类号:
刘书颖, 张志华. 原发免疫性血小板减少症的遗传易感基因的研究进展[J]. 临床荟萃, 2021, 36(12): 1139-1143.
[1] |
Swinkels M, Rijkers M, Voorberg J, et al. Emerging Concepts in immune thrombocytopenia[J]. Front Immunol, 2018, 9:880.
doi: 10.3389/fimmu.2018.00880 pmid: 29760702 |
[2] |
Li J, Ma S, Shao L, et al. Inflammation-related gene polymorphisms associated with primary immune thrombocytopenia[J]. Front Immunol, 2017, 8:744.
doi: 10.3389/fimmu.2017.00744 URL |
[3] |
Anis SK, Abdel Ghany EA, Mostafa NO, et al. The role of PTPN22 gene polymorphism in childhood immune thrombocytopenic purpura[J]. Blood Coagul Fibrinolysis, 2011, 22(6):521-525.
doi: 10.1097/MBC.0b013e328347b064 URL |
[4] | Moulis G, Palmaro A, Montastruc JL, et al. Epidemiology of incident immune thrombocytopenia: A nationwide population-based study in France[J]. Blood, 2014, 124(22):3308-3315. |
[5] |
Lee JY, Lee JH, Lee H, et al. Epidemiology and management of primary immune thrombocytopenia: A nationwide population-based study in Korea[J]. Thromb Res, 2017, 155:86-91.
doi: 10.1016/j.thromres.2017.05.010 URL |
[6] |
Rose NR. Negative selection, epitope mimicry and autoimmunity[J]. Curr Opin Immunol, 2017, 49:51-55.
doi: 10.1016/j.coi.2017.08.014 URL |
[7] |
Wu KH, Peng CT, Li TC, et al. Interleukin 4, interleukin 6 and interleukin 10 polymorphisms in children with acute and chronic immune thrombocytopenic purpura[J]. Br J Haematol, 2015, 128(6):849-852.
doi: 10.1111/bjh.2005.128.issue-6 URL |
[8] |
Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Br J Haematol, 2007, 136(2):309-314.
doi: 10.1111/bjh.2007.136.issue-2 URL |
[9] |
Rocha AM, De Souza C, Rocha GA, et al. IL1RN VNTR and IL2-330 polymorphic genes are independently associated with chronic immune thrombocytopenia[J]. Br J Haematol, 2010, 150(6):679-684.
doi: 10.1111/j.1365-2141.2010.08318.x URL |
[10] |
Pehlivan M, Okan V, Sever T, et al. Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Platelets, 2011, 22(8):588-595.
doi: 10.3109/09537104.2011.577255 pmid: 21591983 |
[11] |
Saitoh T, Tsukamoto N, Koiso H, et al. Interleukin-17F gene polymorphism in patients with chronic immune thrombocytopenia[J]. Eur J Haematol, 2011, 87(3):253-258.
doi: 10.1111/ejh.2011.87.issue-3 URL |
[12] |
Bottini N, Musumeci L, Alonso A. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes[J]. Nat Genet, 2004, 36:337-338.
pmid: 15004560 |
[13] |
Gloria-Bottini F, Saccucci P, Manca-Bitti ML, et al. Type 1 diabetes mellitus. Comparison between the association with PTPN22 genotype and the association with ACP1-ADA1 joint genotype[J]. Diabetes Res Clin Pract, 2014, 106(1):e7-e9.
doi: 10.1016/j.diabres.2014.07.022 URL |
[14] |
Hill RJ, Zozulya S, Lu YL, et al. The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation[J]. Exp Hematol, 2002, 30(3):237-244.
doi: 10.1016/S0301-472X(01)00794-9 URL |
[15] |
Lioger B, Rollin J, Vayne C, et al. No impact of PTPN22, PTPRJ and ACP1 genes polymorphisms on the risk of immune thrombocytopenia in French adult patients[J]. Thromb Res, 2016, 144:76-78.
doi: 10.1016/j.thromres.2016.04.013 URL |
[16] |
Bottini N, Stefanini L, Williams S, et al. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP)[J]. J Biol Chem, 2002, 277(27):24220-24224.
doi: 10.1074/jbc.M202885200 pmid: 11976341 |
[17] |
Spina C, Saccucci P, Bottini E, et al. ACP1 genetic polymorphism and colon cancer[J]. Cancer Genet Cytogenet, 2008, 186(1):61-62.
doi: 10.1016/j.cancergencyto.2008.06.006 URL |
[18] | Bottini N, Bottini E, Gloria-Bottini F, et al. Low-molecular-weight protein tyrosine phosphatase and human disease: In search of biochemical mechanisms[J]. Arch Immunol Ther Exp (Warsz), 2002, 50(2):95-104. |
[19] |
Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response[J]. Blood, 2004, 103(7):2645-2647.
doi: 10.1182/blood-2003-07-2268 pmid: 14670926 |
[20] | Zhang D, Zhang X, Ge M, et al. The polymorphisms of T cell-specific TBX21 gene may contribute to the susceptibility of chronic immune thrombocytopenia in Chinese population[J]. Hum Immunol, 2014, 75(2):129-133. |
[21] |
Hodohara K, Fujii N, Yamamoto N, et al. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK)[J]. Blood, 2000, 95(3):769-775.
pmid: 10648384 |
[22] |
Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis[J]. Blood, 2000, 96(13):4142-4151.
pmid: 11110685 |
[23] |
Ku FC, Tsai CR, der Wang J, et al. Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia[J]. Eur J Haematol, 2013, 90(1):25-30.
doi: 10.1111/ejh.2012.90.issue-1 URL |
[24] |
Wang JD, Ou TT, Wang CJ, et al. Platelet apoptosis resistance and increased CXCR4 expression in pediatric patients with chronic immune thrombocytopenic purpura.[J]. Thromb Res, 2010, 126(4):311-318.
doi: 10.1016/j.thromres.2010.06.023 URL |
[25] |
Sarpatwari A, Bussel JB, Ahmed M, et al. Single nucleotide polymorphism (SNP) analysis demonstrates a significant association of tumour necrosis factor-alpha (TNFA) with primary immune thrombocytopenia among Caucasian adults[J]. Hematology, 2011, 16(4):243-248.
doi: 10.1179/102453311X13025568941808 pmid: 21756542 |
[26] |
Ji L, Zhan Y, Hua F, et al. The ratio of Treg/Th17 cells correlates with the disease activity of primary immune thrombocytopenia[J]. PLoS One, 2012, 7(12):e50909.
doi: 10.1371/journal.pone.0050909 URL |
[27] |
Zhu X, Ma D, Zhang J, et al. Elevated interleukin-21 correlated to Th17 and Th1 cells in patients with immune thrombocytopenia[J]. J Clin Immunol, 2010, 30(2):253-259.
doi: 10.1007/s10875-009-9353-1 URL |
[28] |
Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF[J]. Science, 2001, 293(5537):2108-2111.
doi: 10.1126/science.1061965 pmid: 11509692 |
[29] |
Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Br J Haematol, 2007, 136(2):309-314.
doi: 10.1111/bjh.2007.136.issue-2 URL |
[30] |
Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex[J]. Blood, 2004, 103(6):2257-2265.
doi: 10.1182/blood-2003-08-2694 URL |
[31] |
Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches[J]. Immunity, 2004, 20(6):785-798.
doi: 10.1016/j.immuni.2004.05.010 URL |
[32] |
Pehlivan M, Okan V, Sever T, et al. Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Platelets, 2011, 22(8):588-595.
doi: 10.3109/09537104.2011.577255 pmid: 21591983 |
[33] |
Tesse R, Vecchio G, Mattia DD, et al. Association of interleukin-(IL)10 haplotypes and serum IL-10 levels in the progression of childhood immune thrombocytopenic purpura[J]. Gene, 2012, 505(1):53-56.
doi: 10.1016/j.gene.2012.05.050 URL |
[34] |
Xueyi L, Lina C, Zhenbiao W, et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-γ therapy[J]. J Clin Immunol, 2013, 33(1):151-161.
doi: 10.1007/s10875-012-9774-0 pmid: 22926407 |
[35] | Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura[J]. Blood, 2008, 112(4):1325-1328. |
[36] |
Zhan Y, Hua F, Ji L, et al. Polymorphisms of the IL-23R gene are associated with primary immune thrombocytopenia but not with the clinical outcome of pulsed high-dose dexamethasone therapy[J]. Annals of Hematology, 2013, 92(8):1057-1062.
doi: 10.1007/s00277-013-1731-3 URL |
[37] |
Rezaeeyan H, Jaseb K, Alghasi A, et al. Association between gene polymorphisms and clinical features in idiopathic thrombocytopenic purpura patients[J]. Blood Coagul Fibrinolysis, 2017, 28(8):617-622.
doi: 10.1097/MBC.0000000000000646 URL |
[38] |
Amorim DM, Silveira Vda S, Scrideli CA, et al. Fcγ receptor gene polymorphisms in childhood immune thrombocytopenic purpura[J]. J Pediatr Hematol Oncol, 2012, 34(5):349-352.
doi: 10.1097/MPH.0b013e3182580908 URL |
[39] |
Wang D, Hu SL, Cheng XL, et al. FCGR2A rs1801274 polymorphism is associated with risk of childhood-onset idiopathic (immune) thrombocytopenic purpura: evidence from a meta-analysis[J]. Thromb Res, 2014, 134(6):1323-1327.
pmid: 25457587 |
[40] |
Papagianni A, Economou M, Tragiannidis A, et al. FcγRIIa and FcγRIIIa polymorphisms in childhood primary immune thrombocytopenia: Implications for disease pathogenesis and outcome[J]. Blood Coagul Fibrinolysis, 2013, 24(1):35-39.
doi: 10.1097/MBC.0b013e328359bc3b URL |
[41] |
Liu XG, Ren J, Yu Y, et al. Decreased expression of interleukin-27 in immune thrombocytopenia[J]. Br J Haematol, 2011, 153(2):259-267.
doi: 10.1111/bjh.2011.153.issue-2 URL |
[42] |
Cao J, Chen C, Li L, et al. Effects of high-dose dexamethasone on regulating interleukin-22 production and correcting Th1 and Th22 polarization in immune thrombocytopenia.[J]. J Clin Immunol, 2012, 32(3):523-529.
doi: 10.1007/s10875-012-9649-4 URL |
[43] |
Tao J, Yang M, Zhong C, et al. Decreased DNA methyltransferase 3A and 3B mRNA expression in peripheral blood mononuclear cells and increased plasma sah concentration in adult patients with idiopathic thrombocytopenic purpura[J]. J Clin Immunol, 2008, 28(5):432-439.
doi: 10.1007/s10875-008-9223-2 URL |
[44] | Pesmatzoglou M, Lourou M, Goulielmos GN, et al. DNA methyltransferase 3B gene promoter and interleukin-1 receptor antagonist polymorphisms in childhood immune thrombocytopenia[J]. Clin Dev Immunol, 2012, 2012:352059. |
[45] | Li JQ, Hu SY, Wang ZY, et al. MicroRNA-125-5p targeted CXCL13: A potential biomarker associated with immune thrombocytopenia[J]. Am J Transl Res, 2015, 7(4):772-780. |
[46] |
Li JQ, Hu SY, Wang ZY, et al. Long non-coding RNA MEG3 inhibits microRNA-125a-5p expression and induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura[J]. Biomed Pharmacother, 2016, 83:905-911.
doi: 10.1016/j.biopha.2016.07.057 URL |
[47] |
Gang D, Yu S, He Y, et al. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction[J]. Mol Med Rep, 2017, 16(3):2835-2843.
doi: 10.3892/mmr.2017.6901 pmid: 28677771 |
[48] | Jernås M, Hou Y, Strömberg Célind F, et al. Differences in gene expression and cytokine levels between newly diagnosed and chronic pediatric ITP[J]. Blood, 2013, 122(10):1789-1792. |
[49] |
Berruyer C, Pouyet L, Millet V, et al. Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity[J]. J Exp Med, 2006, 203(13):2817-2827.
doi: 10.1084/jem.20061640 URL |
[50] |
Zhang B, Lo C, Shen L, et al. The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP[J]. Blood, 2011, 117(17):4569-4579.
doi: 10.1182/blood-2010-09-304931 pmid: 21325602 |
[51] |
Yacobovich J, Revel-Vilk S, Tamary H. Childhood immune thrombocytopenia--Who will spontaneously recover?[J]. Semin Hematol, 2013, 50(Suppl 1):S71-S74.
doi: 10.1053/j.seminhematol.2013.03.013 URL |
[1] | 刘婉琦, 樊树芹, 庄瑞雪, 贺峰, 刘振川, 解忠祥. 成人水痘-带状疱疹病毒相关颅内感染5例临床分析[J]. 临床荟萃, 2024, 39(2): 149-154. |
[2] | 吕莎莎, 宋金兰, 石健. m.3243A>G突变相关线粒体糖尿病1例并文献复习[J]. 临床荟萃, 2024, 39(2): 160-163. |
[3] | 刘岩, 刘琼, 梁晓梅, 刘冰. 以发热为主要症状的自发性肾出血继发感染1例并文献复习[J]. 临床荟萃, 2023, 38(9): 823-826. |
[4] | 顾天舒, 梁雪, 蔡嘉庚, 李广平. m6A RNA甲基化修饰在心血管疾病中的进展[J]. 临床荟萃, 2023, 38(8): 743-748. |
[5] | 武颖颖, 孔维香. 端粒及端粒酶逆转录酶基因与慢性阻塞性肺疾病相关性的研究进展[J]. 临床荟萃, 2023, 38(8): 749-752. |
[6] | 高福生, 张川, 展玉涛. 经内镜逆行性胰胆管造影术后并发症相关影响因素分析及防治进展[J]. 临床荟萃, 2023, 38(6): 550-553. |
[7] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[8] | 辛在娥. 误诊为脑膜炎的蛛网膜下腔出血1例及文献复习[J]. 临床荟萃, 2023, 38(5): 448-450. |
[9] | 赵淑珍, 王三萍, 赵晓云. 遗传性癫痫伴热性惊厥附加症SLC32A1基因变异1例并文献复习[J]. 临床荟萃, 2023, 38(5): 451-454. |
[10] | 马明福, 魏志国, 何铁英. 急性胰腺炎并发胰腺假性囊肿危险因素的meta分析[J]. 临床荟萃, 2023, 38(4): 293-301. |
[11] | 杨金强, 张仁敏. 降钙素原与血小板比值评估发热伴血小板减少综合征预后的价值[J]. 临床荟萃, 2023, 38(4): 346-351. |
[12] | 李仁霞, 周泽平. 血小板生成素受体激动剂在成人免疫性血小板减少症中的应用[J]. 临床荟萃, 2023, 38(12): 1140-1145. |
[13] | 庞姝, 张铭凯, 白红梅, 吴咏冬. 先天性无痛无汗症1例并文献复习[J]. 临床荟萃, 2023, 38(1): 64-67. |
[14] | 刘玉清, 程佶. 家族性Holt-Oram综合征1例并文献复习[J]. 临床荟萃, 2023, 38(1): 71-74. |
[15] | 郑玲, 苏晶莹, 伍定辉, 姚向阳. 白细胞介素相关基因多态性与尘肺易感性系统评价与meta分析[J]. 临床荟萃, 2023, 38(1): 5-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||