临床荟萃 ›› 2022, Vol. 37 ›› Issue (4): 369-372.doi: 10.3969/j.issn.1004-583X.2022.04.016
收稿日期:
2021-10-28
出版日期:
2022-04-20
发布日期:
2022-05-13
通讯作者:
吕佩源
E-mail:peiyuanlu@163.com
基金资助:
Received:
2021-10-28
Online:
2022-04-20
Published:
2022-05-13
摘要:
在全球范围内,脑卒中具有极高的发病率、死亡率和致残率,给家庭和社会带来了沉重的负担,但目前其治疗方法仍十分有限。控制危险因素是预防缺血性脑卒中发生的关键。越来越多的证据表明,免疫炎症反应在脑卒中的病理生理过程中起到重要作用。动脉粥样硬化、高血压、高胆固醇血症、心脏疾病等是缺血性脑卒中的危险因素,调节性T细胞与之密切相关。调节性T细胞是CD4+T细胞的一个亚群,在维持免疫动态平衡、预防自身免疫和炎症等方面发挥重要作用。本文将对调节性T细胞与缺血性脑卒中危险因素进行综述,以期为缺血性脑卒中的预防及治疗提供新思路。
中图分类号:
何洪真, 吕佩源. 调节性T细胞与缺血性脑卒中危险因素的相关性[J]. 临床荟萃, 2022, 37(4): 369-372.
[1] |
Dong Y, Guo ZN, Li Q. et al. Chinese stroke association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of spontaneous subarachnoid haemorrhage[J]. Stroke Vasc Neurol, 2019, 4(4): 176-181.
doi: 10.1136/svn-2019-000296 pmid: 32030200 |
[2] |
Chen HS, Chen X, Li WT. et al. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery[J]. Acta Pharmacol Sin, 2018, 39(5): 669-682.
doi: 10.1038/aps.2018.27 URL |
[3] |
Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M. et al. Regulatory T cells participate in the recovery of ischemic stroke patients[J]. BMC Neurol, 2020, 20(1): 68.
doi: 10.1186/s12883-020-01648-w pmid: 32111174 |
[4] |
Sakaguchi S, Sakaguchi N, Asano M. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
pmid: 7636184 |
[5] |
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes[J]. Immunology, 2020, 160(1): 24-37.
doi: 10.1111/imm.13178 URL |
[6] |
Tao JH, Cheng M, Tang JP. et al. Foxp3, regulatory T cell, and autoimmune diseases[J]. Inflammation, 2017, 40(1): 328-339.
doi: 10.1007/s10753-016-0470-8 URL |
[7] |
Battaglia M, Stabilini A, Migliavacca B. et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients[J]. J Immunol, 2006, 177(12): 8338-8347.
doi: 10.4049/jimmunol.177.12.8338 pmid: 17142730 |
[8] | Trzonkowski P, Szarynska M, Mysliwska J. et al. Ex vivo expansion of CD4(+)CD25(+) T regulatory cells for immunosuppressive therapy[J]. Cytometry A, 2009, 75(3): 175-188. |
[9] |
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: Mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564.
doi: 10.1146/annurev.immunol.25.022106.141623 pmid: 22224781 |
[10] |
Wang Y, Zhang JH, Sheng J. et al. Immunoreactive cells after cerebral ischemia[J]. Front Immunol, 2019, 10: 2781.
doi: 10.3389/fimmu.2019.02781 URL |
[11] |
Drieu A, Buendia I, Levard D. et al. Immune responses and anti-inflammatory strategies in a clinically relevant model of thromboembolic ischemic stroke with reperfusion[J]. Transl Stroke Res, 2020, 11(3): 481-495.
doi: 10.1007/s12975-019-00733-8 URL |
[12] |
Ito M, Komai K, Nakamura T. et al. Tissue regulatory T cells and neural repair[J]. Int Immunol, 2019, 31(6): 361-369.
doi: 10.1093/intimm/dxz031 URL |
[13] |
Mao L, Li P, Zhu W. et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke[J]. Brain, 2017, 140(7): 1914-1931.
doi: 10.1093/brain/awx111 URL |
[14] |
Ito M, Komai K, Mise-Omata S. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery[J]. Nature, 2019, 565(7738): 246-250.
doi: 10.1038/s41586-018-0824-5 URL |
[15] |
Li P, Gan Y, Sun BL. et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia[J]. Ann Neurol, 2013, 74(3): 458-471.
doi: 10.1002/ana.23815 URL |
[16] |
Sakai R, Komai K, Iizuka-Koga M. et al. Regulatory T cells: Pathophysiological roles and clinical applications[J]. Keio J Med, 2020, 69(1): 1-15.
doi: 10.2302/kjm.2019-0003-OA URL |
[17] | Klein M, Bopp T. Cyclic AMP represents a crucial component of treg cell-mediated immune regulation[J]. Front Immunol, 2016, 7: 315. |
[18] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑血管病一级预防指南2019[J]. 中华神经科杂志, 2019, 52(9): 684-708. |
[19] | He X, Liang B, Gu N. Th17/Treg imbalance and atherosclerosis[J]. Dis Markers, 2020: 8821029. |
[20] |
Gewaltig J, Kummer M, Koella C. et al. Requirements for CD8 T-cell migration into the human arterial wall[J]. Hum Pathol, 2008, 39(12): 1756-1762.
doi: 10.1016/j.humpath.2008.04.018 pmid: 18706675 |
[21] |
Ait-Oufella H, Salomon BL, Potteaux S. et al. Natural regulatory T cells control the development of atherosclerosis in mice[J]. Nat Med, 2006, 12(2): 178-180.
pmid: 16462800 |
[22] |
Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells[J]. Arterioscler Thromb Vasc Biol, 2015, 35(2): 280-287.
doi: 10.1161/ATVBAHA.114.303568 URL |
[23] |
Matrougui K, Abd Elmageed Z, Kassan M. et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice[J]. Am J Pathol, 2011, 178(1): 434-441.
doi: 10.1016/j.ajpath.2010.11.034 pmid: 21224080 |
[24] |
Radwan E, Mali V, Haddox S. et al. Treg cells depletion is a mechanism that drives microvascular dysfunction in mice with established hypertension[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(2): 403-412.
doi: 10.1016/j.bbadis.2018.10.031 URL |
[25] |
Iulita MF, Duchemin S, Vallerand D. et al. CD4(+) regulatory T lymphocytes prevent impaired cerebral blood flow in angiotensin Ⅱ-induced hypertension[J]. J Am Heart Assoc, 2019, 8(1): e009372.
doi: 10.1161/JAHA.118.009372 URL |
[26] |
Gu X, Li Y, Chen S. et al. Association of lipids with ischemic and hemorrhagic stroke: A prospective cohort study among 267500 Chinese[J]. Stroke, 2019, 50(12): 3376-3384.
doi: 10.1161/STROKEAHA.119.026402 URL |
[27] |
Amarenco P, Bogousslavsky J, Callahan A. et al. High-dose atorvastatin after stroke or transient ischemic attack[J]. N Engl J Med, 2006, 355(6): 549-559.
doi: 10.1056/NEJMoa061894 URL |
[28] |
Katsanos AH, Hart RG. New horizons in pharmacologic therapy for secondary stroke prevention[J]. JAMA Neurol, 2020, 77(10): 1308-1317.
doi: 10.1001/jamaneurol.2020.2494 URL |
[29] |
Amarenco P, Kim JS, Labreuche J. et al. A comparison of two LDL cholesterol targets after ischemic stroke[J]. N Engl J Med, 2020, 382(1): 9.
doi: 10.1056/NEJMoa1910355 URL |
[30] |
Maganto-Garcia E, Tarrio ML, Grabie N. et al. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia[J]. Circulation, 2011, 124(2): 185-195.
doi: 10.1161/CIRCULATIONAHA.110.006411 pmid: 21690490 |
[31] |
Mailer RKW, Gistera A, Polyzos KA. et al. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population[J]. Sci Rep, 2017, 7(1): 15655.
doi: 10.1038/s41598-017-15546-8 URL |
[32] |
Rao LN, Ponnusamy T, Philip S. et al. Hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in Apob(tm2Sgy) Ldlr(tm1Her)/J mice[J]. Lipids, 2015, 50(8): 785-797.
doi: 10.1007/s11745-015-4046-4 URL |
[33] |
Hu H, Wu J, Cao C. et al. Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization[J]. IUBMB Life, 2020, 72(11): 2409-2419.
doi: 10.1002/iub.2364 URL |
[34] |
Mukhopadhyay S, Varma S, Mohan Kumar HN. et al. Circulating level of regulatory T cells in rheumatic heart disease: An observational study[J]. Indian Heart J, 2016, 68(3): 342-348.
doi: 10.1016/j.ihj.2015.08.009 pmid: 27316488 |
[35] |
Sulzgruber P, Koller L, Winter MP. et al. The impact of CD4(+)CD28(null) T-lymphocytes on atrial fibrillation and mortality in patients with chronic heart failure[J]. Thromb Haemost, 2017, 117(2): 349-356.
doi: 10.1160/TH16-07-0531 URL |
[36] | Hammer A, Sulzgruber P, Koller L. et al. The prognostic impact of circulating regulatory T lymphocytes on mortality in patients with ischemic heart failure with reduced ejection fraction[J]. Mediators Inflamm, 2020: 6079713. |
[1] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[2] | 宋佳亮, 蒋英杰, 孔瑞娜, 蔡青, 高洁. 以IgE和嗜酸粒细胞升高伴多发淋巴结肿大为主要表现的IgG4相关性疾病1例报告[J]. 临床荟萃, 2024, 39(1): 57-60. |
[3] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[4] | 李阳, 默峰, 辛志飞, 王倩, 邓新娜. 特殊临床表现多系统免疫相关不良事件1例[J]. 临床荟萃, 2023, 38(7): 633-637. |
[5] | 裴红运, 文洁, 山凤莲. 结核病患者淋巴细胞程序性细胞死亡受体-1表达变化的研究进展[J]. 临床荟萃, 2023, 38(7): 659-662. |
[6] | 孙星星, 林海. 儿童重症肺炎的免疫功能变化及预后危险因素[J]. 临床荟萃, 2023, 38(6): 521-525. |
[7] | 程婷婷, 齐彩英, 张雪莲, 肖梦, 隋伟行, 李小燕, 刘建英. 重症肺炎支原体肺炎与血清IgE和C反应蛋白水平的相关性及临床特征[J]. 临床荟萃, 2023, 38(5): 433-437. |
[8] | 冷婉铜, 陶洁. 多发性骨髓瘤患者治疗后发生静脉血栓栓塞的危险因素[J]. 临床荟萃, 2023, 38(4): 340-345. |
[9] | 周大伟, 费长东, 刘宇鹏, 张华霖. 获得性免疫缺陷综合征合并重症肺炎1例并文献复习[J]. 临床荟萃, 2023, 38(4): 352-355. |
[10] | 易静静, 圈启芳, 马婕. 调节小胶质细胞反应性:糖尿病视网膜病变新见解[J]. 临床荟萃, 2023, 38(4): 364-368. |
[11] | 谢少为, 吕小涵, 董艳红, 吕佩源. 抗炎细胞因子在阿尔茨海默病中的研究进展[J]. 临床荟萃, 2023, 38(2): 185-188. |
[12] | 代菁, 陈华茜. 血液透析患者自发性肾破裂1例并文献复习[J]. 临床荟萃, 2023, 38(12): 1107-1111. |
[13] | 王思源, 王利, 温新然, 李小青. 新型冠状病毒感染后儿童多系统炎症综合征2例并文献复习[J]. 临床荟萃, 2023, 38(12): 1112-1116. |
[14] | 黄小敏, 赵旭辉, 达德转, 马桃梅, 李红玲. EB病毒感染和程序性死亡受体配体1表达在晚期胃癌免疫靶向治疗中的研究进展[J]. 临床荟萃, 2023, 38(11): 1048-1052. |
[15] | 何培华, 周幸福, 洪炜鸿, 王利纯, 刘素君, 金玉燕, 曾佳豪, 刘立昌. IgG4相关性肾病4例临床分析[J]. 临床荟萃, 2023, 38(11): 1016-1021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||