临床荟萃 ›› 2022, Vol. 37 ›› Issue (9): 779-784.doi: 10.3969/j.issn.1004-583X.2022.09.002
收稿日期:
2022-04-21
出版日期:
2022-09-20
发布日期:
2022-11-21
通讯作者:
黄邵斌
E-mail:596207993@qq.com
Received:
2022-04-21
Online:
2022-09-20
Published:
2022-11-21
Contact:
Huang Shaobin
E-mail:596207993@qq.com
摘要:
目的 系统评价FIB-4预测慢性肝病患者出现肝细胞癌的价值。方法 检索PubMed、Web of Science、中国知网和万方数据库中有关FIB-4预测慢性肝病患者肝细胞癌风险的文献,并根据纳入和排除标准筛选,利用RevMan 5.3软件进行统计分析。结果 共纳入文献35篇,包含肝细胞癌患者94 569例。Meta分析结果显示:慢性肝病患者基线高FIB-4(HR=1.57, 95%CI: 1.41-1.75, P<0.01)及抗病毒治疗后高FIB-4(HR=2.40, 95%CI: 1.74-3.32, P<0.01)与慢性乙肝或慢性丙肝患者的高肝细胞癌风险有关。结论 FIB-4可预测慢性肝病患者的肝细胞癌风险。
中图分类号:
贺超, 黄邵斌. FIB-4预测慢性肝病患者肝细胞癌风险的meta分析[J]. 临床荟萃, 2022, 37(9): 779-784.
He Chao, Huang Shaobin. Predicting the risk by FIB-4 on hepatocellular carcinoma in patients with chronic liver disease: A meta-analysis[J]. Clinical Focus, 2022, 37(9): 779-784.
第一作者,发表年 | 例数 | 慢性肝病分类 | 国家 | 截断值 | NOS 评分 |
---|---|---|---|---|---|
Alonso López, 2020[ | 993 | HCV | 西班牙 | - | 8 |
Demir, 2016[ | 373 | HBV | 德国 | 1.25 | 7 |
Jeong, 2021[ | 857 | HBV | 韩国 | - | 8 |
Chu, 2017[ | 101 | HCV | 日本 | - | 7 |
Degasperi, 2019[ | 452 | HCV | 意大利 | - | 6 |
Fusco, 2016[ | 4 492 | HCV/HBV | 意大利 | 3.25 | 7 |
Honda, 2016[ | 109 | HBV | 日本 | 2.1 | 8 |
Huang, 2017[ | 552 | HCV | 中国 | 3.25 | 8 |
Iio, 2019[ | 1416 | HCV | 日本 | 2.67 | 8 |
Ioannou, 2019[ | 48 135 | HCV | 美国 | 3.25 | 7 |
Ito, 2015[ | 516 | HCV | 日本 | 4 | 8 |
Kim, 2016[ | 542 | HBV | 韩国 | 2.225 | 7 |
Kim, 2018[ | 924 | 酒精性肝硬化 | 韩国 | 3.25 | 8 |
Kim, 2021[ | 237 | NAFLD&HBV | 韩国 | 1.77 | 9 |
Kobayashi, 2017[ | 605 | HCV | 日本 | 3.25 | 8 |
Kuetting, 2019[ | 350 | HBV | 德国 | 0.3635 | 7 |
Kumada, 2021[ | 717 | HCV | 日本 | 1.5 | 8 |
Liang, 2021[ | 15 187 | HBV | 中国 | 3.25 | 8 |
Lim, 2020[ | 769 | HBV | 韩国 | 3.25 | 8 |
Liu, 2019[ | 152 | HBV&HCV | 中国 | - | 8 |
Morimoto, 2019[ | 518 | HCV | 日本 | 4 | 8 |
Na, 2019[ | 295 | HCV | 韩国 | 3.25 | 8 |
Nishikawa, 2017[ | 338 | HBV | 日本 | 3.666 | 8 |
Ogawa,2020[ | 290 | HCV | 日本 | 3.25 | 8 |
Park, 2017[ | 1 109 | HBV | 韩国 | - | 8 |
Patel, 2016[ | 1 356 | 肝硬化 | 美国 | 无 | 6 |
Sato, 2016[ | 355 | HCV | 日本 | 3.7 | 8 |
Song, 2018[ | 1 014 | HBV | 韩国 | 1.45 | 7 |
Sou,2020[ | 1 397 | HBV | 中国 | - | 8 |
Suh, 2015[ | 986 | HBV | 韩国 | 2.4 | 7 |
Tada, 2017[ | 539 | HBV | 日本 | 2.65 | 8 |
Tamaki, 2014[ | 3 823 | HCV | 日本 | 3.25 | 7 |
Tseng, 2021[ | 1 936 | HBV | 中国 | 1.3 | 8 |
Wang, 2020[ | 1 325 | HBV | 中国 | 2.56 | 8 |
Watanabe, 2019[ | 1 174 | HCV | 日本 | - | 8 |
表1 纳入文献的基本情况
第一作者,发表年 | 例数 | 慢性肝病分类 | 国家 | 截断值 | NOS 评分 |
---|---|---|---|---|---|
Alonso López, 2020[ | 993 | HCV | 西班牙 | - | 8 |
Demir, 2016[ | 373 | HBV | 德国 | 1.25 | 7 |
Jeong, 2021[ | 857 | HBV | 韩国 | - | 8 |
Chu, 2017[ | 101 | HCV | 日本 | - | 7 |
Degasperi, 2019[ | 452 | HCV | 意大利 | - | 6 |
Fusco, 2016[ | 4 492 | HCV/HBV | 意大利 | 3.25 | 7 |
Honda, 2016[ | 109 | HBV | 日本 | 2.1 | 8 |
Huang, 2017[ | 552 | HCV | 中国 | 3.25 | 8 |
Iio, 2019[ | 1416 | HCV | 日本 | 2.67 | 8 |
Ioannou, 2019[ | 48 135 | HCV | 美国 | 3.25 | 7 |
Ito, 2015[ | 516 | HCV | 日本 | 4 | 8 |
Kim, 2016[ | 542 | HBV | 韩国 | 2.225 | 7 |
Kim, 2018[ | 924 | 酒精性肝硬化 | 韩国 | 3.25 | 8 |
Kim, 2021[ | 237 | NAFLD&HBV | 韩国 | 1.77 | 9 |
Kobayashi, 2017[ | 605 | HCV | 日本 | 3.25 | 8 |
Kuetting, 2019[ | 350 | HBV | 德国 | 0.3635 | 7 |
Kumada, 2021[ | 717 | HCV | 日本 | 1.5 | 8 |
Liang, 2021[ | 15 187 | HBV | 中国 | 3.25 | 8 |
Lim, 2020[ | 769 | HBV | 韩国 | 3.25 | 8 |
Liu, 2019[ | 152 | HBV&HCV | 中国 | - | 8 |
Morimoto, 2019[ | 518 | HCV | 日本 | 4 | 8 |
Na, 2019[ | 295 | HCV | 韩国 | 3.25 | 8 |
Nishikawa, 2017[ | 338 | HBV | 日本 | 3.666 | 8 |
Ogawa,2020[ | 290 | HCV | 日本 | 3.25 | 8 |
Park, 2017[ | 1 109 | HBV | 韩国 | - | 8 |
Patel, 2016[ | 1 356 | 肝硬化 | 美国 | 无 | 6 |
Sato, 2016[ | 355 | HCV | 日本 | 3.7 | 8 |
Song, 2018[ | 1 014 | HBV | 韩国 | 1.45 | 7 |
Sou,2020[ | 1 397 | HBV | 中国 | - | 8 |
Suh, 2015[ | 986 | HBV | 韩国 | 2.4 | 7 |
Tada, 2017[ | 539 | HBV | 日本 | 2.65 | 8 |
Tamaki, 2014[ | 3 823 | HCV | 日本 | 3.25 | 7 |
Tseng, 2021[ | 1 936 | HBV | 中国 | 1.3 | 8 |
Wang, 2020[ | 1 325 | HBV | 中国 | 2.56 | 8 |
Watanabe, 2019[ | 1 174 | HCV | 日本 | - | 8 |
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 URL |
[2] |
Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
doi: 10.1056/NEJMra1713263 URL |
[3] |
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6.
doi: 10.1038/s41572-020-00240-3 pmid: 33479224 |
[4] |
Collaborators GHB. Global, regional, and national burden of hepatitis B, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Gastroenterol Hepatol, 2022, 7(9): 796-829.
doi: 10.1016/S2468-1253(22)00124-8 URL |
[5] |
Collaborators POH. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study[J]. Lancet Gastroenterol Hepatol, 2022, 7(5): 396-415.
doi: 10.1016/S2468-1253(21)00472-6 URL |
[6] |
Spearman CW, Dusheiko GM, Hellard M, et al. Hepatitis C[J]. Lancet, 2019, 394(10207): 1451-1466.
doi: S0140-6736(19)32320-7 pmid: 31631857 |
[7] |
Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
doi: 10.1016/S0140-6736(20)32511-3 pmid: 33894145 |
[8] |
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904.
doi: S0168-8278(18)32121-4 pmid: 29886156 |
[9] |
Asrani SK, Mellinger J, Arab JP, et al. Reducing the global burden of alcohol-associated liver disease: A blueprint for action[J]. Hepatology, 2021, 73(5): 2039-2050.
doi: 10.1002/hep.31583 URL |
[10] |
Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection[J]. Am J Gastroenterol, 2002, 97(10): 2614-2618.
pmid: 12385448 |
[11] |
Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection[J]. Hepatology, 2006, 43(6): 1317-1325.
pmid: 16729309 |
[12] |
Alonso López S, Manzano ML, Gea F, et al. A model based on noninvasive markers predicts very low hepatocellular carcinoma risk after viral response in hepatitis C virus-advanced fibrosis[J]. Hepatology, 2020, 72(6): 1924-1934.
doi: 10.1002/hep.31588 pmid: 33022803 |
[13] |
Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis[J]. Hepatology, 2017, 66(5): 1486-1501.
doi: 10.1002/hep.29302 pmid: 28586172 |
[14] |
Wang HW, Peng CY, Lai HC, et al. New noninvasive index for predicting liver fibrosis in Asian patients with chronic viral hepatitis[J]. Sci Rep, 2017, 7(1): 3259.
doi: 10.1038/s41598-017-03589-w URL |
[15] |
Demir M, Grünewald F, Lang S, et al. Elevated liver fibrosis index FIB-4 is not reliable for HCC risk stratification in predominantly non-Asian CHB patients[J]. Medicine (Baltimore), 2016, 95(38): e4602.
doi: 10.1097/MD.0000000000004602 URL |
[16] |
Suh B, Yun JM, Park S, et al. Prediction of future hepatocellular carcinoma incidence in moderate to heavy alcohol drinkers with the FIB-4 liver fibrosis index[J]. Cancer, 2015, 121(21): 3818-3125.
doi: 10.1002/cncr.29577 pmid: 26178294 |
[17] |
Jeong J, Shin JW, Jung SW, et al. Clinical usefulness of noninvasive fibrosis indices for predicting hepatocellular carcinoma in treatment-naïve patients with chronic hepatitis B following entecavir therapy[J]. Hepatol Res, 2021, 51(9): 923-932.
doi: 10.1111/hepr.13690 URL |
[18] |
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605.
doi: 10.1007/s10654-010-9491-z pmid: 20652370 |
[19] |
Chu PS, Nakamoto N, Taniki N, et al. On-treatment decrease of NKG2D correlates to early emergence of clinically evident hepatocellular carcinoma after interferon-free therapy for chronic hepatitis C[J]. PLoS One, 2017, 12(6): e0179096.
doi: 10.1371/journal.pone.0179096 URL |
[20] |
Degasperi E, Galmozzi E, Facchetti F, et al. TLL1 variants do not predict hepatocellular carcinoma development in HCV cirrhotic patients treated with direct-acting antivirals[J]. J Viral Hepat, 2019, 26(10): 1233-1236.
doi: 10.1111/jvh.13155 URL |
[21] |
Fusco M, Piselli P, Virdone S, et al. Infection with hepatitis viruses, FIB-4 index and risk of hepatocellular carcinoma in southern Italy: A population-based cohort study[J]. Infect Agent Cancer, 2016, 11: 54.
doi: 10.1186/s13027-016-0101-x URL |
[22] |
Honda M, Shirasaki T, Terashima T, et al. Hepatitis B virus (HBV) core-related antigen during nucleos(t)ide analog therapy is related to intra-hepatic HBV replication and development of hepatocellular carcinoma[J]. J Infect Dis, 2016, 213(7): 1096-1106.
doi: 10.1093/infdis/jiv572 pmid: 26621908 |
[23] |
Huang CM, Hu TH, Chang KC, et al. Dynamic noninvasive markers predict hepatocellular carcinoma in chronic hepatitis C patients without sustained virological response after interferon-based therapy: Prioritize who needs urgent direct-acting antiviral agents[J]. Medicine (Baltimore), 2017, 96(46): e8696.
doi: 10.1097/MD.0000000000008696 URL |
[24] |
Iio E, Matsuura K, Shimada N, et al. TLL1 variant associated with development of hepatocellular carcinoma after eradication of hepatitis C virus by interferon-free therapy[J]. J Gastroenterol, 2019, 54(4): 339-346.
doi: 10.1007/s00535-018-1526-3 pmid: 30382363 |
[25] |
Ioannou GN, Beste LA, Green PK, et al. Increased risk for hepatocellular carcinoma persists up to 10 years after HCV eradication in patients with baseline cirrhosis or high FIB-4 scores[J]. Gastroenterology, 2019, 157(5): 1264-1278.e4.
doi: S0016-5085(19)41130-X pmid: 31356807 |
[26] |
Ito T, Kumada T, Toyoda H, et al. Utility of the FIB-4 Index for hepatocarcinogenesis in hepatitis C virus carriers with normal alanine aminotransferase levels[J]. J Viral Hepat, 2015, 22(10): 777-783.
doi: 10.1111/jvh.12389 URL |
[27] |
Kim JH, Kim JW, Seo JW, et al. Noninvasive tests for fibrosis predict 5-year mortality and hepatocellular carcinoma in patients with chronic hepatitis B[J]. J Clin Gastroenterol, 2016, 50(10): 882-888.
pmid: 27322532 |
[28] |
Kim JH, Lee M, Park SW, et al. Validation of modified fibrosis-4 index for predicting hepatocellular carcinoma in patients with compensated alcoholic liver cirrhosis[J]. Medicine (Baltimore), 2018, 97(48): e13438.
doi: 10.1097/MD.0000000000013438 URL |
[29] |
Kim M, Lee Y, Yoon JS, et al. The FIB-4 index is a useful predictor for the development of hepatocellular carcinoma in patients with coexisting nonalcoholic fatty liver disease and chronic hepatitis B[J]. Cancers (Basel), 2021, 13(10): 2301.
doi: 10.3390/cancers13102301 URL |
[30] |
Kobayashi M, Suzuki F, Fujiyama S, et al. Sustained virologic response by direct antiviral agents reduces the incidence of hepatocellular carcinoma in patients with HCV infection[J]. J Med Virol, 2017, 89(3): 476-483.
doi: 10.1002/jmv.24663 pmid: 27531586 |
[31] | Kuetting F, Lang S, Schramm C, et al. FIB-4 is a potential tool for hepatocellular carcinoma risk stratification in ethnically diverse chronic hepatitis B patients when using specific cutoff values[J]. Hepatitis Monthly, 2019, 19(12): e94574. |
[32] |
Kumada T, Toyoda H, Yasuda S, et al. Usefulness of serial FIB-4 score measurement for predicting the risk of hepatocarcinogenesis after hepatitis C virus eradication[J]. Eur J Gastroenterol Hepatol, 2021, 33(1S Suppl 1): e513-e521.
doi: 10.1097/MEG.0000000000002139 URL |
[33] |
Liang LY, Lee HW, Wong VW, et al. Serum fibrosis index-based risk score predicts hepatocellular carcinoma in untreated patients with chronic hepatitis B[J]. Clin Mol Hepatol, 2021, 27(3): 499-509.
doi: 10.3350/cmh.2020.0333 pmid: 33631920 |
[34] |
Lim TS, Lee HW, Lee JI, et al. Predictive score for hepatocellular carcinoma after hepatitis B e antigen loss in patients treated with entecavir or tenofovir[J]. J Viral Hepat, 2020, 27(10): 1052-1060.
doi: 10.1111/jvh.13316 URL |
[35] |
Liu CJ, Tseng TC, Yang WT, et al. Profile and value of FIB-4 in patients with dual chronic hepatitis C and B[J]. J Gastroenterol Hepatol, 2019, 34(2): 410-417.
doi: 10.1111/jgh.14455 URL |
[36] |
Morimoto N, Miura K, Watanabe S, et al. Usefulness of Gd-EOB-DTPA-enhanced MRI for evaluating the potential for early development of hepatocellular carcinoma after HCV eradication by direct-acting antiviral treatment[J]. J Rural Med, 2019, 14(1): 78-86.
doi: 10.2185/jrm.2993 pmid: 31191770 |
[37] |
Na SK, Lee SJ, Cho YK, et al. Aspartate aminotransferase-to-platelet ratio or fibros-4 index predicts the development of hepatocellular carcinoma in chronic hepatitis C patients with sustained virologic response to interferon therapy[J]. J Interferon Cytokine Res, 2019, 39(11): 703-710.
doi: 10.1089/jir.2019.0049 URL |
[38] |
Nishikawa H, Nishijima N, Enomoto H, et al. Comparison of FIB-4 index and aspartate aminotransferase to platelet ratio index on carcinogenesis in chronic hepatitis B treated with entecavir[J]. J Cancer, 2017, 8(2): 152-161.
doi: 10.7150/jca.16523 pmid: 28243319 |
[39] |
Ogawa E, Takayama K, Hiramine S, et al. Association between steatohepatitis biomarkers and hepatocellular carcinoma after hepatitis C elimination[J]. Aliment Pharmacol Ther, 2020, 52(5): 866-876.
doi: 10.1111/apt.15976 URL |
[40] |
Park YE, Kim BK, Park JY, et al. Gamma-glutamyl transpeptidase-to-platelet ratio is an independent predictor of hepatitis B virus-related liver cancer[J]. J Gastroenterol Hepatol, 2017, 32(6): 1221-1229.
doi: 10.1111/jgh.13653 URL |
[41] |
Patel J, Yopp A, Waljee AK, et al. Development and internal validation of a model for early detection of hepatocellular carcinoma in patients with cirrhosis[J]. J Clin Gastroenterol, 2016, 50(2): 175-179.
doi: 10.1097/MCG.0000000000000377 pmid: 26125462 |
[42] |
Sato S, Genda T, Ichida T, et al. Prediction of hepatocellular carcinoma development after hepatitis C virus eradication using serum wisteria floribunda agglutinin-positive mac-2-binding protein[J]. Int J Mol Sci, 2016, 17(12): 2143.
doi: 10.3390/ijms17122143 URL |
[43] |
Song BG, Sinn DH, Chi S, et al. Additional role of liver stiffness measurement in stratifying residual hepatocellular carcinoma risk predicted by serum biomarkers in chronic hepatitis B patients under antiviral therapy[J]. Eur J Gastroenterol Hepatol, 2018, 30(12): 1447-1452.
doi: 10.1097/MEG.0000000000001226 URL |
[44] |
Sou FM, Hu TH, Hung CH, et al. Incidence and predictors of hepatocellular carcinoma beyond year 5 of entecavir therapy in chronic hepatitis B patients[J]. Hepatol Int, 2020, 14(4): 513-520.
doi: 10.1007/s12072-020-10031-3 URL |
[45] |
Suh B, Park S, Shin DW, et al. High liver fibrosis index FIB-4 is highly predictive of hepatocellular carcinoma in chronic hepatitis B carriers[J]. Hepatology, 2015, 61(4): 1261-1268.
doi: 10.1002/hep.27654 pmid: 25502481 |
[46] |
Tada T, Kumada T, Toyoda H, et al. Impact of FIB-4 index on hepatocellular carcinoma incidence during nucleos(t)ide analogue therapy in patients with chronic hepatitis B: An analysis using time-dependent receiver operating characteristic[J]. J Gastroenterol Hepatol, 2017, 32(2): 451-458.
doi: 10.1111/jgh.13473 URL |
[47] |
Tamaki N, Kurosaki M, Matsuda S, et al. Non-invasive prediction of hepatocellular carcinoma development using serum fibrosis marker in chronic hepatitis C patients[J]. J Gastroenterol, 2014, 49(11): 1495-1503.
doi: 10.1007/s00535-013-0914-y pmid: 24337828 |
[48] |
Tseng TC, Choi J, Nguyen MH, et al. One-year fibrosis-4 index helps identify minimal HCC risk in non-cirrhotic chronic hepatitis B patients with antiviral treatment[J]. Hepatol Int, 2021, 15(1): 105-113.
doi: 10.1007/s12072-020-10124-z URL |
[49] |
Wang HW, Lai HC, Hu TH, et al. On-treatment changes in FIB-4 and 1-year FIB-4 values help identify patients with chronic hepatitis B receiving entecavir therapy who have the lowest risk of hepatocellular carcinoma[J]. Cancers (Basel), 2020, 12(5): 1177-1192.
doi: 10.3390/cancers12051177 URL |
[50] |
Watanabe T, Tokumoto Y, Joko K, et al. Predictors of hepatocellular carcinoma occurrence after direct-acting antiviral therapy in patients with hepatitis C virus infection[J]. Hepatol Res, 2019, 49(2): 136-146.
doi: 10.1111/hepr.13278 pmid: 30335208 |
[51] |
Zhang Y, Wang R, Yang X. FIB-4 index serves as a noninvasive prognostic biomarker in patients with hepatocellular carcinoma: A meta-analysis[J]. Medicine (Baltimore), 2018, 97(51): e13696.
doi: 10.1097/MD.0000000000013696 URL |
[52] |
Patten DA, Shetty S. Chronic liver disease: scavenger hunt for novel therapies[J]. Lancet, 2018, 391(10116): 104-105.
doi: S0140-6736(17)32671-5 pmid: 29353605 |
[53] |
Dong B, Lyu G, Chen Y, et al. Comparison of two-dimensional shear wave elastography, magnetic resonance elastography, and three serum markers for diagnosing fibrosis in patients with chronic hepatitis B: A meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(9): 1077-1089.
doi: 10.1080/17474124.2021.1880894 URL |
[54] |
Xiao G, Yang J, Yan L. Comparison of diagnostic accuracy of aspartate aminotransferase to platelet ratio index and fibrosis-4 index for detecting liver fibrosis in adult patients with chronic hepatitis B virus infection: A systemic review and meta-analysis[J]. Hepatology, 2015, 61(1): 292-302.
doi: 10.1002/hep.27382 pmid: 25132233 |
[55] |
Li X, Xu H, Gao P. Fibrosis index based on 4 factors (FIB-4) predicts liver cirrhosis and hepatocellular carcinoma in chronic hepatitis C virus (HCV) patients[J]. Med Sci Monit, 2019, 25: 7243-7250.
doi: 10.12659/MSM.918784 URL |
[1] | 龚财芳, 赵俊宇, 游川. 接纳与承诺疗法对癌症患者心理健康和生活质量影响的meta分析[J]. 临床荟萃, 2024, 39(2): 101-107. |
[2] | 肖煌怡, 袁建坤, 严梓予, 曾雯姝, 鲁兰莫, 王峻. 认知干预对遗忘型轻度认知障碍老年患者干预效果的meta分析[J]. 临床荟萃, 2024, 39(1): 12-19. |
[3] | 吕畅, 周利明. TNF-α-308基因多态性与胃癌易感相关性的meta分析[J]. 临床荟萃, 2023, 38(9): 779-787. |
[4] | 李海, 刘文虎, 彭绍鹏, 王飞. 控制性阶梯式减压术对比快速标准大骨瓣减压术治疗重度颅脑损伤疗效的meta分析[J]. 临床荟萃, 2023, 38(9): 788-795. |
[5] | 侯有玲, 李奕, 关红玉, 罗红霞. 目标导向液体治疗在脑肿瘤切除术中应用效果的meta分析[J]. 临床荟萃, 2023, 38(8): 686-693. |
[6] | 金家辉, 杨阳, 秦铜, 何雨欣, 苏美华. 补充益生菌对2型糖尿病患者糖代谢改善的meta分析[J]. 临床荟萃, 2023, 38(7): 581-587. |
[7] | 肖王静, 李欣梦, 卢松玲, 孙雪华. 重复经颅磁刺激治疗中枢神经源性吞咽障碍疗效及安全性的meta分析[J]. 临床荟萃, 2023, 38(7): 588-599. |
[8] | 尤奕, 高淑清, 徐浩. 肠内营养对食管癌患者术后临床结局影响的系统综述[J]. 临床荟萃, 2023, 38(6): 485-492. |
[9] | 倪艺芸, 刘彬, 梁琪, 李晓凤. 白细胞介素6和C反应蛋白预测新型冠状病毒肺炎严重程度的meta分析[J]. 临床荟萃, 2023, 38(6): 493-499. |
[10] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[11] | 赵哲, 穆培娟, 张冬. 恩度联合顺铂胸腔灌注治疗肺癌合并恶性胸腔积液疗效的meta分析[J]. 临床荟萃, 2023, 38(5): 399-404. |
[12] | 马明福, 魏志国, 何铁英. 急性胰腺炎并发胰腺假性囊肿危险因素的meta分析[J]. 临床荟萃, 2023, 38(4): 293-301. |
[13] | 曹宇萌, 张海燕, 刘立新. 非酒精性脂肪性肝病的病理改变与血清铁蛋白和血清铁含量变化关系的meta分析[J]. 临床荟萃, 2023, 38(3): 197-207. |
[14] | 马宏莉, 陆皓, 王丹, 焦海星, 李一珂, 李思雨, 吕静. 脑卒中患者残疾危险因素的meta分析[J]. 临床荟萃, 2023, 38(2): 111-116. |
[15] | 陶嘉楠, 李文茜, 马秀雯, 安琪, 王学红. HER-2在肝细胞癌中表达及临床意义的meta分析[J]. 临床荟萃, 2023, 38(12): 1067-1072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||