[1] |
Nguyen PH, Ramamoorthy A, Sahoo BR, et al. Amyloid oligomers: A joint experimental/computational perspective on alzheimer's disease, parkinson's disease, type ii diabetes, and amyotrophic lateral sclerosis[J]. Chem Rev, 2021, 121(4):2545-2647.
doi: 10.1021/acs.chemrev.0c01122
pmid: 33543942
|
[2] |
Zhang LY, Jin QQ, Hölscher C, et al. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat parkinson model[J]. Neural Regen Res, 2021, 16(8):1660-1670.
doi: 10.4103/1673-5374.303045
URL
|
[3] |
Kopp KO, Glotfelty EJ, Li Y, et al. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: implications for neurodegenerative disease treatment[J]. Pharmacol Res, 2022, 186:106550.
doi: 10.1016/j.phrs.2022.106550
URL
|
[4] |
Manfready RA, Forsyth CB, Voigt RM, et al. Gut-brain communication in parkinson's disease: Enteroendocrine regulation by GLP-1[J]. Curr Neurol Neurosci Rep, 2022, 22(7):335-342.
doi: 10.1007/s11910-022-01196-5
|
[5] |
Liu W, Lim KL, Tan EK. Intestine-derived α-synuclein initiates and aggravates pathogenesis of parkinson's disease in Drosophila[J]. Transl Neurodegener, 2022, 11(1):44.
doi: 10.1186/s40035-022-00318-w
pmid: 36253844
|
[6] |
Rodrigues PV, de Godoy JVP, Bosque BP, et al. Transcellular propagation of fibrillar α-synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent[J]. Sci Rep, 2022, 12(1):4168.
doi: 10.1038/s41598-022-08076-5
pmid: 35264710
|
[7] |
Braak H, Rüb U, Gai WP, et al. Idiopathic parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen[J]. J Neural Transm (Vienna), 2003, 110(5):517-536.
|
[8] |
Borghammer P. How does parkinson's disease begin? perspectives on neuroanatomical pathways, prions, and histology[J]. Mov Disord, 2018, 33(1):48-57.
doi: 10.1002/mds.v33.1
URL
|
[9] |
Shannon KM, Keshavarzian A, Mutlu E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease[J]. Movement Disorders, 2012, 27(6):709-715.
doi: 10.1002/mds.23838
pmid: 21766334
|
[10] |
Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration[J]. PLoS Pathog, 2017, 13(12):e1006654.
|
[11] |
Dumitrescu L, Marta D, Dănău A, et al. Serum and fecal markers of intestinal inflammation and intestinal barrier permeability are elevated in parkinson's disease[J]. Front Neurosci. 2021, 18(15):689723.
|
[12] |
Sampson T, Debelius J, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease[J]. Cell, 2016, 167(6):1469-1480,e12.
doi: S0092-8674(16)31590-2
pmid: 27912057
|
[13] |
Joers V, Masilamoni G, Kempf D, et al. Microglia, inflammation and gut microbiota responses in a progressive monkey model of parkinson's disease: A case series[J]. Neurobiol Dis, 2020, 144:105027.
doi: 10.1016/j.nbd.2020.105027
URL
|
[14] |
Abdel-Haq R, Schlachetzki JCM, Glass CK, et al. Microbiome-microglia connections via the gut-brain axis[J]. J Exp Med, 2019, 216(1):41-59.
doi: 10.1084/jem.20180794
|
[15] |
Nishiwaki H, Hamaguchi T, Ito M, et al. Short-chain fatty acid-producing gut microbiota is decreased in parkinson's disease but not in rapid-eye-movement sleep behavior disorder[J]. mSystems, 2020, 5(6):e00797-e007920.
|
[16] |
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol (Lausanne), 2020, 31(11):25.
|
[17] |
Ducastel S, Touche V, Trabelsi MS, et al. The nuclear receptor FXR inhibits glucagon-like peptide-1 secretion in response to microbiota-derived short-chain fatty acids[J]. Sci Rep, 2020, 10(1):174.
doi: 10.1038/s41598-019-56743-x
pmid: 31932631
|
[18] |
Uyar M, Lezius S, Buhmann C, et al. Diabetes, glycated hemoglobin (hba1c), and neuroaxonal damage in parkinson's disease (MARK-PD study)[J]. Mov Disord, 2022, 37(6):1299-1304.
doi: 10.1002/mds.v37.6
URL
|
[19] |
Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1[J]. Cell Metab, 2018, 27(4):740-756.
doi: S1550-4131(18)30179-7
pmid: 29617641
|
[20] |
Elabi OF, Davies JS, Lane EL. L-dopa-dependent effects of GLP-1R agonists on the survival of dopaminergic cells transplanted into a rat model of parkinson disease[J]. Int J Mol Sci, 2021, 22(22):12346.
doi: 10.3390/ijms222212346
URL
|
[21] |
Cui QN, Stein LM, Fortin SM, et al. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: Implications for obesity, diabetes, neurodegeneration and glaucoma[J]. Br J Pharmacol, 2022, 179(4):715-726.
doi: 10.1111/bph.v179.4
URL
|
[22] |
Manfready RA, Engen PA, Verhagen ML, et al. Attenuated postprandial GLP-1 response in parkinson's disease[J]. Front Neurosci, 2021, 2(15):660942.
|
[23] |
郑鑫, 朱育刚, 王德峰. GLP-1受体激动剂对超重及肥胖2型糖尿病患者胰岛细胞功能影响的系统评价[J]. 临床荟萃, 2019, 34(12):1102-1107.
|
[24] |
Zhang ZQ, Hölscher C. GIP has neuroprotective effects in Alzheimer and Parkinson's disease models[J]. Peptides, 2020, 125:170184.
doi: 10.1016/j.peptides.2019.170184
URL
|
[25] |
Lv M, Xue G, Cheng H, et al. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01[J]. Brain Behav, 2021, 11(8):e2231.
|
[26] |
Chen X, Huang Q, Feng J, et al. GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway[J]. J Int Med Res, 2021, 49(2):300060521992981.
|
[27] |
Jalewa J, Sharma MK, Gengler S, et al. A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of parkinson's disease[J]. Neuropharmacology, 2017, 1(117):238-248.
|
[28] |
Li T, Tu L, Gu R, et al. Neuroprotection of GLP-1/GIP receptor agonist via inhibition、of mitochondrial stress by AKT/JNK pathway in a Parkinson's disease model[J]. Life Sci, 2020, 1(256):117824.
|
[29] |
Brauer R, Wei L, Ma T, et al. Diabetes medications and risk of parkinson's disease: A cohort study of patients with diabetes[J]. Brain, 2020, 143(10):3067-3076.
doi: 10.1093/brain/awaa262
pmid: 33011770
|