临床荟萃 ›› 2023, Vol. 38 ›› Issue (11): 1048-1052.doi: 10.3969/j.issn.1004-583X.2023.11.017
黄小敏1, 赵旭辉1, 达德转2, 马桃梅1, 李红玲2()
收稿日期:
2023-07-11
出版日期:
2023-11-20
发布日期:
2024-01-17
通讯作者:
李红玲
E-mail:Lihongling1969@126.com
基金资助:
Received:
2023-07-11
Online:
2023-11-20
Published:
2024-01-17
摘要:
胃癌是常见的恶性肿瘤之一,在中国尤为高发。早期胃癌手术治疗效果较好,但晚期转移性胃癌患者远期生存率仍不乐观,通常需进行全身性药物治疗。近期的研究强调了EB病毒(EBV)和程序性死亡受体配体 1(PD-L1)等因素在晚期胃癌发展中的关键作用。靶向免疫治疗作为一种新兴的方法在胃癌治疗中已得到广泛应用,并对患者的预后产生了积极的影响。本文综合总结了EBV与PD-L1在胃癌中的表达情况,以及免疫治疗的研究进展,着重分析其在胃癌免疫治疗中的潜在预测和应用价值,并综合相关文献,探讨EB病毒、PD-L1等免疫因素与胃癌的临床特征、分子机制、预后关联,以及免疫治疗的有效性和耐受性。
中图分类号:
黄小敏, 赵旭辉, 达德转, 马桃梅, 李红玲. EB病毒感染和程序性死亡受体配体1表达在晚期胃癌免疫靶向治疗中的研究进展[J]. 临床荟萃, 2023, 38(11): 1048-1052.
[1] |
Korn AR, Walsh-Bailey C, Correa-Mendez M, et al. Social determinants of health and US cancer screening interventions: A systematic review[J]. CA Cancer J Clin, 2023, 73(5):461-479.
doi: 10.3322/caac.v73.5 URL |
[2] |
Alsina M, Arrazubi V, Diez M, et al. Current developments in gastric cancer: from molecular profiling to treatment strategy[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 155-170.
doi: 10.1038/s41575-022-00703-w |
[3] |
Shitara K, Bang YJ, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer[J]. N Engl J Med, 2020, 382(25): 2419-2430.
doi: 10.1056/NEJMoa2004413 URL |
[4] |
Rodriquenz MG, Roviello G, D'Angelo A, et al. MSI and EBV positive gastric cancer's subgroups and their link with novel immunotherapy[J]. J Clin Med, 2020, 9(5):1427.
doi: 10.3390/jcm9051427 URL |
[5] |
Suh YS, Na D, Lee JS, et al. Comprehensive molecular characterization of adenocarcinoma of the gastroesophageal junction between esophageal and gastric adenocarcinomas[J]. Ann Surg, 2022, 275(4):706-717.
doi: 10.1097/SLA.0000000000004303 URL |
[6] |
Li S, Yu W, Xie F, et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer[J]. Nat Commun, 2023, 14(1): 8.
doi: 10.1038/s41467-022-35431-x pmid: 36596787 |
[7] |
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: current therapeutics and emerging technologies[J]. Front Immunol, 2022, 13: 1059133.
doi: 10.3389/fimmu.2022.1059133 URL |
[8] |
Zheng X, Huang Y, Li K, et al. Immunosuppressive tumor microenvironment and immunotherapy of epstein-barr virus-associated malignancies[J]. Viruses, 2022, 14(5):1017.
doi: 10.3390/v14051017 URL |
[9] |
Zhou H, Jing S, Liu Y, et al. Identifying the key genes of Epstein-Barr virus-regulated tumour immune microenvironment of gastric carcinomas[J]. Cell Prolif, 2023, 56(3): e13373.
doi: 10.1111/cpr.v56.3 URL |
[10] |
Sun L, Meckes DG Jr. Methodological approaches to study extracellular vesicle mirnas in epstein-barr virus-associated cancers[J]. Int J Mol Sci, 2018, 19(9):2810.
doi: 10.3390/ijms19092810 URL |
[11] |
Cone AS, York SB, Meckes DG Jr. Extracellular vesicles in epstein-barr virus pathogenesis[J]. Curr Clin Microbiol Rep, 2019, 6(3): 121-31.
doi: 10.1007/s40588-019-00123-6 pmid: 32051811 |
[12] | Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response[J]. Signal Transduct Target Ther, 2022, 7(1): 331. |
[13] |
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance[J]. J Immunother Cancer, 2020, 8(2):e000841.
doi: 10.1136/jitc-2020-000841 URL |
[14] |
Damania B, Kenney SC, Raab-Traub N. Epstein-barr virus: Biology and clinical disease[J]. Cell, 2022, 185(20): 3652-3670.
doi: 10.1016/j.cell.2022.08.026 pmid: 36113467 |
[15] |
Biggi AFB, Elgui de Oliveira D. The epstein-barr virus hacks immune checkpoints: Evidence and consequences for lymphoproliferative disorders and cancers[J]. Biomolecules, 2022, 12(3):397.
doi: 10.3390/biom12030397 URL |
[16] |
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections[J]. J Med Virol, 2023, 95(1): e27840.
doi: 10.1002/jmv.v95.1 URL |
[17] |
Guo R, Gewurz BE. Epigenetic control of the epstein-barr lifecycle[J]. Curr Opin Virol, 2022, 52: 78-88.
doi: 10.1016/j.coviro.2021.11.013 URL |
[18] |
Fierti AO, Yakass MB, Okertchiri EA, et al. The role of epstein-barr virus in modulating key tumor suppressor genes in associated malignancies: epigenetics, transcriptional, and post-translational modifications[J]. Biomolecules, 2022, 12(1):127.
doi: 10.3390/biom12010127 URL |
[19] |
Guo R, Liang JH, Zhang Y, et al. Methionine metabolism controls the B cell EBV epigenome and viral latency[J]. Cell Metab, 2022, 34(9): 1280-1297,e9.
doi: 10.1016/j.cmet.2022.08.008 pmid: 36070681 |
[20] | Ka-Yue Chow L, Lai-Shun Chung D, Tao L, et al. Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma[J]. E Bio Medicine, 2022, 86: 104357. |
[21] |
Sugiura M, Imai S, Tokunaga M, et al. Transcriptional analysis of Epstein-Barr virus gene expression in EBV-positive gastric carcinoma: Unique viral latency in the tumour cells[J]. Br J Cancer, 1996, 74(4): 625-31.
doi: 10.1038/bjc.1996.412 |
[22] |
Stanland LJ, Luftig MA. The role of EBV-Induced hypermethylation in gastric cancer tumorigenesis[J]. Viruses, 2020, 12(11):1222.
doi: 10.3390/v12111222 URL |
[23] |
Wang Q, He H, Ji X, et al. BART-D2 subtype of EBV encoded BART miRNA cluster 1 region is strongly associated with endemic nasopharyngeal carcinoma[J]. J Med Virol, 2023, 95(3): e28667.
doi: 10.1002/jmv.v95.3 URL |
[24] | Pyo JS, Kim NY, Kang DW. Clinicopathological significance of EBV-infected gastric carcinomas: A meta-analysis[J]. Medicina (Kaunas), 2020, 56(7):345. |
[25] |
Cheng N, Li P, Cheng H, et al. Prognostic value of tumor-infiltrating lymphocytes and tertiary lymphoid structures in epstein-barr virus-associated and-negative gastric carcinoma[J]. Front Immunol, 2021, 12: 692859.
doi: 10.3389/fimmu.2021.692859 URL |
[26] |
Tanabe H, Mizukami Y, Takei H, et al. Clinicopathological characteristics of epstein-barr virus and microsatellite instability subtypes of early gastric neoplasms classified by the Japanese and the world health organization criteria[J]. J Pathol Clin Res, 2021, 7(4): 397-409.
doi: 10.1002/cjp2.v7.4 URL |
[27] |
Iizasa H, Kartika AV, Fekadu S, et al. Development of epstein-barr virus-associated gastric cancer: infection, inflammation, and oncogenesis[J]. World J Gastroenterol, 2022, 28(44): 6249-6257.
doi: 10.3748/wjg.v28.i44.6249 URL |
[28] |
Ignatova E, Seriak D, Fedyanin M, et al. Epstein-barr virus-associated gastric cancer: Disease that requires special approach[J]. Gastric Cancer, 2020, 23(6): 951-960.
doi: 10.1007/s10120-020-01095-z |
[29] |
De Re V, Caggiari L, De Zorzi M, et al. Epstein-barr virus BART microRNAs in EBV-associated hodgkin lymphoma and gastric cancer[J]. Infect Agent Cancer, 2020, 15: 42.
doi: 10.1186/s13027-020-00307-6 |
[30] |
Dai X, Gao Y, Wei W. Post-translational regulations of PD-L1 and PD-1: Mechanisms and opportunities for combined immunotherapy[J]. Semin Cancer Biol, 2022, 85: 246-252.
doi: 10.1016/j.semcancer.2021.04.002 URL |
[31] |
Chiang NJ, Hou YC, Tan KT, et al. The immune microenvironment features and response to immunotherapy in EBV-associated lymphoepithelioma-like cholangiocarcinoma[J]. Hepatol Int, 2022, 16(5): 1137-1149.
doi: 10.1007/s12072-022-10346-3 |
[32] |
Sasaki S, Nishikawa J, Sakai K, et al. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions[J]. Gastric Cancer, 2019, 22(3): 486-496.
doi: 10.1007/s10120-018-0880-4 pmid: 30264329 |
[33] |
Kondo A, Shinozaki-Ushiku A, Rokutan H, et al. Loss of viral genome with altered immune microenvironment during tumour progression of Epstein-Barr virus-associated gastric carcinoma[J]. J Pathol, 2023, 260(2): 124-136.
doi: 10.1002/path.v260.2 URL |
[34] |
Bai Y, Xie T, Wang Z, et al. Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer[J]. J Immunother Cancer, 2022, 10(3):e004080.
doi: 10.1136/jitc-2021-004080 URL |
[35] |
Xie T, Liu Y, Zhang Z, et al. Positive status of epstein-barr virus as a biomarker for gastric cancer immunotherapy: A prospective observational study[J]. J Immunother, 2020, 43(4): 139-144.
doi: 10.1097/CJI.0000000000000316 pmid: 32134806 |
[36] |
Manfredi F, Cianciotti BC, Potenza A, et al. TCR redirected t cells for cancer treatment: Achievements, hurdles, and goals[J]. Front Immunol, 2020, 11: 1689.
doi: 10.3389/fimmu.2020.01689 pmid: 33013822 |
[37] |
Li W, Duan X, Chen X, et al. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma[J]. Front Immunol, 2023, 13: 1079515.
doi: 10.3389/fimmu.2022.1079515 URL |
[38] |
Cui X, Snapper CM. Epstein Barr Virus: Development of vaccines and immune cell therapy for EBV-associated diseases[J]. Front Immunol, 2021, 12: 734471.
doi: 10.3389/fimmu.2021.734471 URL |
[39] |
Nusbaum KB, Dulmage B, Choi JN, et al. Cutaneous manifestations of chimeric antigen receptor T-cell therapy: An introduction for dermatologists[J]. J Am Acad Dermatol, 2022, 87(3): 597-604.
doi: 10.1016/j.jaad.2021.07.017 URL |
[40] |
Slabik C, Kalbarczyk M, Danisch S, et al. CAR-T cells targeting epstein-barr virus gp350 validated in a humanized mouse model of EBV infection and lymphoproliferative disease[J]. Mol Ther Oncolytics, 2020, 18: 504-524.
doi: 10.1016/j.omto.2020.08.005 URL |
[41] |
Zhang X, Wang T, Zhu X, et al. GMP development and preclinical validation of CAR-T cells targeting a lytic EBV antigen for therapy of EBV-associated malignancies[J]. Front Immunol, 2023, 14:1103695.
doi: 10.3389/fimmu.2023.1103695 URL |
[42] |
Jia X, Guo T, Li Z, et al. Clinicopathological and Immunomicroenvironment Characteristics of Epstein-Barr Virus-Associated Gastric Cancer in a Chinese population[J]. Front Oncol, 2020, 10: 586752.
doi: 10.3389/fonc.2020.586752 URL |
[43] |
Cao B, Liu M, Huang J, et al. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer[J]. Int J Biol Sci, 2021, 17(14): 3850-3861.
doi: 10.7150/ijbs.64630 pmid: 34671203 |
[44] |
Gao Z, Bai Y, Lin A, et al. Gamma delta T-cell-based immune checkpoint therapy: Attractive candidate for antitumor treatment[J]. Mol Cancer, 2023, 22(1): 31.
doi: 10.1186/s12943-023-01722-0 pmid: 36793048 |
[45] |
Cui X, Snapper CM. Epstein Barr Virus: Development of vaccines and immune cell therapy for EBV-associated diseases[J]. Front Immunol, 2021, 12:734471.
doi: 10.3389/fimmu.2021.734471 URL |
[46] |
Dasari V, Sinha D, Neller MA, et al. Prophylactic and therapeutic strategies for epstein-barr virus-associated diseases: Emerging strategies for clinical development[J]. Expert Rev Vaccines, 2019, 18(5): 457-474.
doi: 10.1080/14760584.2019.1605906 pmid: 30987475 |
[47] |
Ji H, Yang T, Li C, et al. EBV-encoded miRNAs BHRF1-1 and BART2-5p aggravate post-transplant lymphoproliferative disorder via LZTS2-PI3K-AKT axis[J]. Biochem Pharmacol, 2023: 214:115676.
doi: 10.1016/j.bcp.2023.115676 URL |
[48] |
Zhang C, Tan Q, Li S, et al. Induction of EBV latent membrane protein-2A (LMP2A)-specific T cells and construction of individualized TCR-engineered T cells for EBV-associated malignancies[J]. J Immunother Cancer, 2021, 9(7):e002516.
doi: 10.1136/jitc-2021-002516 URL |
[1] | 赵旭辉, 黄小敏, 达德转, 许焱, 崔晓东, 李红玲. 基于生物信息学筛选影响胃癌患者预后的糖酵解相关基因[J]. 临床荟萃, 2024, 39(1): 20-29. |
[2] | 吕畅, 周利明. TNF-α-308基因多态性与胃癌易感相关性的meta分析[J]. 临床荟萃, 2023, 38(9): 779-787. |
[3] | 王英南, 赵琦, 白海威, 武丹娜, 魏金梅, 李省江, 李锐凌, 张瑞星. 胃癌合并脑梗死的临床特点及危险因素分析[J]. 临床荟萃, 2023, 38(5): 417-422. |
[4] | 王军宏, 高振华, 章荣龙, 姬浩民, 赵信科, 达明绪. 1980-2021年胃癌诊断文献相关质量分析——基于Web of Science 数据库的文献计量学分析[J]. 临床荟萃, 2023, 38(12): 1117-1124. |
[5] | 李晴, 钟文, 刘思强, 陈愉生, 李鸿茹. PD-1/PD-L1抑制剂治疗非小细胞肺癌脑转移患者疗效的Meta分析[J]. 临床荟萃, 2022, 37(5): 400-405. |
[6] | 陶嘉楠, 田王钊, 安琪, 王学红, 张盛祺, 刘吉. SLP-2在胃癌中的表达及临床意义的Meta分析[J]. 临床荟萃, 2022, 37(4): 299-304. |
[7] | 叶倩, 凌志, 殷旭东. 肌减少症对实体瘤患者免疫检查点抑制剂治疗影响的meta分析[J]. 临床荟萃, 2022, 37(10): 889-898. |
[8] | 晋颖, 汪湃, 冯世兵. 幽门螺杆菌及胃蛋白酶原、胃泌素17水平在胃癌前病变诊断中的应用价值[J]. 临床荟萃, 2021, 36(3): 233-237. |
[9] | 芦迅达, 冯志杰, 纪晨光, 尹凯歌, 刘丽. 早期胃癌内镜黏膜下剥离术后出血的危险因素分析[J]. 临床荟萃, 2021, 36(12): 1087-1091. |
[10] | 王延旭,刘苗,张瑞星. Ⅳ型胃神经内分泌肿瘤的临床病理特征及影响术后复发的危险因素分析[J]. 临床荟萃, 2020, 35(9): 805-810. |
[11] | 霍文萍, 金洪传. 晚期胰腺癌内科治疗进展[J]. 临床荟萃, 2020, 35(8): 761-765. |
[12] | 贾萌萌,周英发. 改良微血管及表面结构分型对早期胃癌诊断的临床意义[J]. 临床荟萃, 2020, 35(5): 429-433. |
[13] | 李雯彬1, 2,卢娟娟3a,王淑兰3a,陈芳芳1, 2,詹渭鹏3b,刘文彬3a,宋学娟4,张文杰1, 2. 着色性干皮病基因G组基因多态性与胃癌的相关研究进展[J]. 临床荟萃, 2020, 35(4): 373-379. |
[14] | 翟谨1, 2,徐俊1,何萍1,花盛浩1,丰涛1. 儿童Epstein-Barr 病毒合并肺炎支原体感染的临床特点[J]. 临床荟萃, 2020, 35(2): 174-176. |
[15] | 刘鑫a,石岩岩b,丁士刚a. 幽门螺杆菌感染和慢性胃炎的关系[J]. 临床荟萃, 2019, 34(5): 389-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||