临床荟萃 ›› 2024, Vol. 39 ›› Issue (3): 259-263.doi: 10.3969/j.issn.1004-583X.2024.03.011
孙庆1, 王海龙2a, 米庆2a, 乐暾2b, 牟华明2a()
收稿日期:
2023-10-17
出版日期:
2024-03-20
发布日期:
2024-06-12
通讯作者:
牟华明
E-mail:mouhm2002@aliyun.com
基金资助:
Received:
2023-10-17
Online:
2024-03-20
Published:
2024-06-12
摘要:
心力衰竭(heart failure,HF)是各种心血管疾病的终末阶段,具有较高的发病率以及致死率。外泌体可以通过影响肾素-血管紧张素系统、心肌纤维化、心肌细胞凋亡、新生血管生成等多方面参与HF的发生与发展。外泌体不但可以作为HF的诊断标志物,而且能够作为靶向药物递送或干细胞治疗的载体助力于HF的治疗。本文就外泌体在HF发生发展中的作用、诊断以及治疗研究进展进行综述。
中图分类号:
孙庆, 王海龙, 米庆, 乐暾, 牟华明. 外泌体在心力衰竭发生发展中的作用及临床价值[J]. 临床荟萃, 2024, 39(3): 259-263.
[1] | Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: A report of the heart failure society of america, heart failure association of the european society of cardiology, japanese heart failure society and writing committee of the universal definition of heart failure[J]. J Card Fail, 2021, Mar1:S1071- 9164(21)00050-6. Online ahead of print |
[2] | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2021》概述[J]. 中国心血管病研究, 2022, 20(7): 577-596. |
[3] | Li H, Gu J, Sun X, et al. Isolation of swine bone marrow lin-/CD45-/CD133+ cells and cardio-protective effects of its exosomes[J]. Stem Cell Rev Rep, 2023, 19(1): 213-229. |
[4] | Luo Z, Hu X, Wu C, et al. Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model[J]. Br J Anaesth, 2023, 130(1): 29-38. |
[5] | Femminò S, Penna C, Margarita S, et al. Extracellular vesicles and cardiovascular system: Biomarkers and cardioprotective effectors[J]. Vascul Pharmacol, 2020, 135:106790. |
[6] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. |
[7] |
Yao J, Huang K, Zhu D, et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano, 2021, 15(7): 11099-11111.
doi: 10.1021/acsnano.1c00628 pmid: 34152126 |
[8] |
Lyu L, Wang H, Li B, et al. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes[J]. J Mol Cell Cardiol, 2015, 89(Pt B): 268-279.
doi: 10.1016/j.yjmcc.2015.10.022 pmid: 26497614 |
[9] |
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5): 2136-2146.
doi: 10.1172/JCI70577 pmid: 24743145 |
[10] | Xiao M, Zeng W, Wang J, et al. Exosomes protect against acute myocardial infarction in rats by regulating the renin-angiotensin system[J]. Stem Cells Dev, 2021, 30(12): 622-631. |
[11] | Moita MR, Silva MM, Diniz C, et al. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis[J]. Front Cardiovasc Med, 2022, 9:1015473. |
[12] | 何亚州. 温中益气方对来源于外泌体的miR-320a调控PIK3CA防治慢性心力衰竭心肌纤维化的研究[D]. 南宁: 广西中医药大学, 2019. |
[13] | Li J, Salvador AM, Li G, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling[J]. Circ Res, 2021, 128(1): e1-e23. |
[14] | Vaskova E, Ikeda G, Tada Y, et al. Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal mir-181a in a rodent chronic myocardial infarction model[J]. J Am Heart Assoc, 2020, 9(13): e015640. |
[15] |
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125-137.
doi: S0022-2828(18)30140-8 pmid: 29698635 |
[16] |
Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine[J]. Theranostics, 2023, 13(2): 685-703.
doi: 10.7150/thno.73568 pmid: 36632217 |
[17] |
Hou Z, Qin X, Hu Y, et al. Longterm exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection[J]. Circ Res, 2019, 124(9): 1386-1400.
doi: 10.1161/CIRCRESAHA.118.314635 pmid: 30879399 |
[18] | Sun C, Li W, Li Y, et al. MiR-182-5p mediated by exosomes derived from bone marrow mesenchymal stem cell attenuates inflammatory responses by targeting tlr4 in a mouse model of myocardial infraction[J]. Immune Netw, 2022, 22(6): e49. |
[19] |
Hu C, Liao J, Huang R, et al. MicroRNA-155-5p in serum derived-exosomes promotes ischaemia-reperfusion injury by reducing CypD ubiquitination by NEDD4[J]. ESC Heart Fail, 2023, 10(2):1144-1157.
doi: 10.1002/ehf2.14279 pmid: 36631006 |
[20] | Ranjan P, Kumari R, Goswami SK, et al. Myofibroblast-derived exosome induce cardiac endothelial cell dysfunction[J]. Front Cardiovasc Med, 2021, 8:676267. |
[21] |
Qiao L, Hu S, Liu S, et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential[J]. J Clin Invest, 2019, 129(6): 2237-2250.
doi: 10.1172/JCI123135 pmid: 31033484 |
[22] | Liu H, Zhang Y, Yuan J, et al. Dendritic cell-derived exosomal miR-494-3p promotes angiogenesis following myocardial infarction[J]. Int J Mol Med, 2021, 47(1): 315-325. |
[23] | 李光召. 肥厚心肌细胞来源外泌体miR-29a调控内皮细胞血管新生机制的研究[D]. 珠海: 遵义医科大学, 2020. |
[24] | Liu S, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2): 22. |
[25] |
Wu T, Chen Y, Du Y, et al. Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure[J]. J Thorac Dis, 2018, 10(11): 6211-6220.
doi: 10.21037/jtd.2018.10.52 pmid: 30622793 |
[26] | Wang L, Liu J, Xu B, et al. Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure[J]. Kaohsiung J Med Sci, 2018, 34(11): 626-633. |
[27] | Lu W, Liu X, Zhao L, et al. MiR-22-3p in exosomes increases the risk of heart failure after down-regulation of FURIN[J]. Chem Biol Drug Des, 2023, 101(3):550-567. |
[28] |
Xie Y, Hang JZ, Zhang N, et al. Clinical significance of MiR-27a expression in serum exosomes in patients with heart failure[J]. Cell Mol Biol (Noisy-le-grand), 2022, 67(5): 324-331.
doi: 10.14715/cmb/2021.67.5.44 pmid: 35818236 |
[29] | 赵娟, 刘婷, 魏红, 等. 血浆外泌体微小RNA-206和N末端B型脑钠肽前体及同型半胱氨酸在心力衰竭患者中的表达水平及应用价值[J]. 中国医药, 2022, 17(9): 1326-1330. |
[30] | 孙晓燕, 亓良森, 赵海鸿, 等. 血清外泌体miR-122及miR-194在心肌梗死患者中诊断早期心衰的价值[J]. 解放军医学院学报, 2021, 42(9): 940-945. |
[31] |
Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction[J]. Circ Res, 2013, 113(3): 322-326.
doi: 10.1161/CIRCRESAHA.113.301209 pmid: 23743335 |
[32] | Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo[J]. Sci Rep, 2019, 9(1): 10041. |
[33] |
Yan F, Cui W, Chen Z. Mesenchymal stem cell-derived exosome-loaded microRNA-129-5p inhibits TRAF3 expression to alleviate apoptosis and oxidative stress in heart failure[J]. Cardiovasc Toxicol, 2022, 22(7): 631-645.
doi: 10.1007/s12012-022-09743-9 pmid: 35546649 |
[34] | Xiong Y, Tang R, Xu J, et al. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway[J]. Stem Cell Res Ther, 2022, 13(1): 289. |
[35] | Gao L, Wang L, Wei Y, et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine[J]. Sci Transl Med, 2020, 12(561):eaay1318. |
[36] | Davidson SM, Riquelme JA, Zheng Y, et al. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning[J]. Sci Rep, 2018, 8(1): 15885. |
[37] | Li Q, Huang Z, Wang Q, et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes[J]. Biomaterials, 2022, 284:121529. |
[38] |
Cheng G, Zhu D, Huang K, et al. Minimally invasive delivery of a hydrogel-based exosome patch to prevent heart failure[J]. J Mol Cell Cardiol, 2022, 169:113-121.
doi: 10.1016/j.yjmcc.2022.04.020 pmid: 35523270 |
[39] | Poupardin R, Wolf M, Strunk D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions[J]. Adv Drug Deliv Rev, 2021, 176:113872. |
[40] | Kim JY, Rhim WK, Yoo YI, et al. Defined MSC exosome with high yield and purity to improve regenerative activity[J]. J Tissue Eng, 2021, 12:20417314211008626. |
[1] | 孟炜丽. 北京市西城区不同结核病防治体系收治肺结核患者治疗管理情况分析[J]. 临床荟萃, 2024, 39(3): 244-248. |
[2] | 任雷, 刘晔, 鲍书友, 李葵芳. 母细胞性浆细胞样树突细胞肿瘤2例并文献复习[J]. 临床荟萃, 2024, 39(3): 253-258. |
[3] | 王奕涵, 秦旭雁, 韩宣泽, 王樱洁, 高菲菲, 陈春红, 张岭楠, 张芳. 利伐沙班用于HASBLED评分≥3分的高龄非瓣膜性心房颤动患者的有效性和安全性[J]. 临床荟萃, 2024, 39(2): 121-124. |
[4] | 金鑫, 吴金玲, 尹丽丽. 持续性植物状态促醒机制及治疗研究进展[J]. 临床荟萃, 2024, 39(2): 172-176. |
[5] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[6] | 崔兰丹, 杨春燕. 脓毒症患者甲状腺激素的变化特点及研究进展[J]. 临床荟萃, 2024, 39(1): 70-74. |
[7] | 马丽娜, 焦焕利, 曹振华. 慢性非缺血性心功能衰竭合并血栓栓塞及药物治疗研究进展[J]. 临床荟萃, 2024, 39(1): 75-79. |
[8] | 邹子良, 余海, 王迪, 褚泰运, 李驹, 钱宝堂. 冠状动脉慢性完全闭塞病变介入治疗研究现状[J]. 临床荟萃, 2024, 39(1): 80-83. |
[9] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[10] | 段芳, 崔炜. 血管扩张剂在急性心力衰竭救治中的应用原则[J]. 临床荟萃, 2023, 38(9): 773-778. |
[11] | 赵浩天, 李丽. 肺超声在心脏急重症疾病合并肺水肿中应用的研究进展[J]. 临床荟萃, 2023, 38(9): 832-837. |
[12] | 王鑫, 张展, 刘铎, 谢萍. 铁缺乏与肺动脉高压相关性的研究进展[J]. 临床荟萃, 2023, 38(9): 838-844. |
[13] | 张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850. |
[14] | 陈聪水, 李园, 陈淑芳. 重视儿童胆源性胰腺炎的中西医诊治(附1例分析)[J]. 临床荟萃, 2023, 38(8): 726-730. |
[15] | 左腾, 王俊祥. 血清阴性类风湿关节炎发病机制的研究进展[J]. 临床荟萃, 2023, 38(8): 753-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||