Clinical Focus ›› 2022, Vol. 37 ›› Issue (1): 72-76.doi: 10.3969/j.issn.1004-583X.2022.01.014
Previous Articles Next Articles
Received:
2021-10-11
Online:
2022-01-20
Published:
2022-01-20
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.01.014
[1] |
Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1):151-171.
doi: 10.1016/j.jhep.2018.09.014 URL |
[2] | Casey G. Diseases of the liver[J]. Nurs N Z, 2016, 22(11):20-24. |
[3] | Zhang YE. Non-smad signaling pathways of the TGF-β family[J]. Cold Spring Harb Perspect Biol, 2017, 9(2):a022129. |
[4] | Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5):a021873. |
[5] |
Ismaeel A, Kim JS, Kirk JS, et al. Role of transforming growth factor-β in skeletal muscle fibrosis: A review[J]. Int J Mol Sci, 2019, 20(10):2446.
doi: 10.3390/ijms20102446 URL |
[6] |
Bai J, Xi Q. Crosstalk between TGF-β signaling and epigenome[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(1):60-67.
doi: 10.1093/abbs/gmx122 URL |
[7] | 吴肖男, 陈乐, 王叶, 等. TGF-β/Smads信号通路在妇科疾病中的作用机制及中医药干预的研究进展[J]. 中医药学报, 2021, 49(1):89-93. |
[8] | Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads[J]. Cold Spring Harb Perspect Biol, 2017, 9(3):a022095. |
[9] | Hata A, Chen YG. TGF-β signaling from receptors to Smads[J]. Cold Spring Harb Perspect Biol, 2016, 8(9):a022061. |
[10] | 范美玲, 应苗法, 赵蕊, 等. TGF-β信号通路在纤维化疾病中的作用研究进展[J]. 解放军医学杂志, 2020, 45(11):1171-1177. |
[11] |
Finnson KW, Almadani Y, Philip A. Non-canonical (non-smad2/3) TGF-β signaling in fibrosis: Mechanisms and targets[J]. Semin Cell Dev Biol, 2019, 101:115-122.
doi: 10.1016/j.semcdb.2019.11.013 URL |
[12] |
Xie F, Ling L, van Dam H, et al. TGF-β signaling in cancer metastasis[J]. Acta Bioch Bioph Sin, 2018, 50(1):121-132.
doi: 10.1093/abbs/gmx123 URL |
[13] |
Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: The major impact of China[J]. Hepatology, 2014, 60(6):2099-2108.
doi: 10.1002/hep.v60.6 URL |
[14] |
Kwon OS, Choi SH, Kim JH. Inflammation and hepatic fibrosis, then hepatocellular carcinoma[J]. Korean J Gastroenterol, 2015, 66(6):320-324.
doi: 10.4166/kjg.2015.66.6.320 URL |
[15] |
Yang T, Zhang H, Lau WY, et al. Liver disease in China: A long way to go[J]. Hepatology, 2015, 62(5):1640.
doi: 10.1002/hep.27769 |
[16] |
Li TY, Yang Y, Zhou G, et al. Immune suppression in chronic hepatitis B infection associated liver disease: A review[J]. World J Gastroenterol, 2019, 25(27):3527-3537.
doi: 10.3748/wjg.v25.i27.3527 URL |
[17] |
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity[J]. Semin Cell Dev Biol, 2020, 101:123-139.
doi: 10.1016/j.semcdb.2019.12.010 URL |
[18] | 王爱珍, 彭国平. 慢性乙肝患者外周血Treg/Th17及相关细胞因子的变化[J]. 中国现代医生, 2013, 51(4):108-110. |
[19] |
Yang PL, Althage A, Chung J, et al. Immune effectors required for hepatitis B virus clearance[J]. Proc Natl Acad Sci USA, 2010, 107(2):798-802.
doi: 10.1073/pnas.0913498107 URL |
[20] | 陈东兰, 郑伟强. 转化生长因子β1在慢性乙型病毒性肝炎抗病毒治疗中的研究进展[J]. 中国医师进修杂志, 2016, 39(7):659-662. |
[21] | Jiang YF, He B, Ma J, et al. Comparison of the antiviral effects of entecavir and adefovir dipivoxil in chronic HBV infection: A randomized control trial[J]. Acta Gastroenterol Belg, 2012, 75(3):316-321. |
[22] |
Li MH, Lu Y, Sun FF, et al. Transforming growth factor β as a possible independent factor in chronic hepatitis B[J]. Arch Virol, 2021, 166(7):1853-1858.
doi: 10.1007/s00705-021-05062-6 URL |
[23] |
Choi SH, Hwang SB. Modulation of the transforming growth factor-beta signal transduction pathway by hepatitis C virus nonstructural 5A protein[J]. J Biol Chem, 2006, 281:7468-7478.
doi: 10.1074/jbc.M512438200 URL |
[24] |
Argentou N, Germanidis G, Hytiroglou P, et al. TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment[J]. Inflamm Res, 2016, 65(5):355-365.
doi: 10.1007/s00011-016-0921-6 URL |
[25] |
Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4):875.
doi: 10.3390/cells9040875 URL |
[26] |
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol, Hepatol, 2017, 14:397-411.
doi: 10.1038/nrgastro.2017.38 pmid: 28487545 |
[27] | 陈阳, 任思思, 范妤, 等. TGF-β1在肝纤维化发生发展中作用及机制的研究进展[J]. 山东医药, 2021, 61(28):110-114. |
[28] |
Navarro-Corcuera A, Ansorena E, Montiel-Duarte C, et al. AGAP2: Modulating TGFβ1-signaling in the regulation of liver fibrosis[J]. Int J Mol Sci, 2020, 21(4):1400.
doi: 10.3390/ijms21041400 URL |
[29] |
Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response[J]. Cell, 2013, 153(3):601-613.
doi: 10.1016/j.cell.2013.03.028 URL |
[30] |
Bian EB, Huang C, Wang H, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats[J]. Toxicol Lett, 2014, 224(2):175-185.
doi: 10.1016/j.toxlet.2013.10.038 URL |
[31] |
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292:76-83.
doi: 10.1016/j.cbi.2018.07.008 URL |
[32] |
Xu F, Liu C, Zhou D, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3):157-167.
doi: 10.1369/0022155415627681 URL |
[33] | Elfeky MG, Mantawy EM, Gad AM, et al. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways[J]. Life Sci, 2020, 240:117096. |
[34] |
Xu Y, Sun X, Zhang R, et al. A positive feedback loop of TET3 and TGF-β1 promotes liver fibrosis[J]. Cell Rep, 2020, 30(5): 1310-1318.e5.
doi: 10.1016/j.celrep.2019.12.092 URL |
[35] |
Macias MJ, Martin-Malpartida P, Massagué J. Structural determinants of Smad function in TGF-β signaling[J]. Trends Biochem Sci, 2015, 40(6):296-308.
doi: 10.1016/j.tibs.2015.03.012 pmid: 25935112 |
[36] | 吴志超, 林伯斌, 孙少杰, 等. 肝癌组织中TGF-β1、β-catenin和EMT相关蛋白表达水平及临床意义[J]. 中国现代普通外科进展, 2019, 22(12):930-934. |
[37] | 宋培军, 刘会春, 周磊, 等. 原发性肝癌患者血清IGF-Ⅱ、TGF-β1及IL-10的检测及意义[J]. 实用医学杂志, 2015, 31(24):4040-4042. |
[38] |
Lin TH, Shao YY, Chan SY, et al. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib[J]. Clin Cancer Res, 2015, 21(16):3678-3684.
doi: 10.1158/1078-0432.CCR-14-1954 URL |
[39] | 朱宏斌, 杨云生, 郭明洲. 肝癌中转化生长因子(TGF)-β信号转导通路的研究进展[J]. 胃肠病学和肝病学杂志, 2012, 21(3):206-209. |
[40] |
Fabregat I, Caballero-Díaz D. Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis[J]. Front Oncol, 2018, 8:357.
doi: 10.3389/fonc.2018.00357 pmid: 30250825 |
[41] |
Fabregat I, Moreno-Càceres J, Sánchez A, et al. TGF-β signalling and liver disease[J]. FEBS J, 2016, 283(12):2219-2232.
doi: 10.1111/febs.13665 pmid: 26807763 |
[42] | 王坦, 徐庆. 转化生长因子β信号通路与肝癌的研究进展[J]. 医学综述, 2017, 14:2746-2750. |
[43] |
Gonzalez-Sanchez E, Vaquero J, Férnandez-Barrena MG, et al. The TGF-β pathway: A pharmacological target in hepatocellular carcinoma?[J]. Cancers (Basel), 2021, 13(13):3248.
doi: 10.3390/cancers13133248 URL |
[44] |
Chen J, Gingold JA, Su X. Immunomodulatory TGF-β signaling in hepatocellular carcinoma[J]. Trends Mol Med, 2019, 25(11):1010-1023.
doi: 10.1016/j.molmed.2019.06.007 URL |
[45] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: Advances in the 21st Century[J]. Clin Microbiol Rev, 2019, 32(2):e00075-18. |
[46] | 徐岩, 庞楠楠, 郭忠帅, 等. CD11C +CD45RA -髓样树突状细胞在泡球蚴感染小鼠中的水平变化[J]. 新疆医科大学学报, 2016, 39(5):565-568. |
[47] |
Liu Y, Abudounnasier G, Zhang T, et al. Increased expression of TGF-β1 in correlation with liver fibrosis during echinococcus granulosus infection in mice[J]. Korean J Parasitol, 2016, 54(4):519-525.
doi: 10.3347/kjp.2016.54.4.519 URL |
[48] | Wang J, Zhang C, Wei X, et al. TGF-β and TGF-β/Smad signaling in the interactions between echinococcus multilocularis and its hosts[J]. PLoS One, 2013, 8(2):e55379. |
[49] |
Zhang S, Hüe S, Sène D, et al. Expression of major histocompatibility complex class I chain-related molecule A, NKG2D, and transforming growth factor-beta in the liver of humans with alveolar echinococcosis: New actors in the tolerance to parasites?[J]. J Infect Dis, 2008, 197(9):1341-1349.
doi: 10.1086/589525 URL |
[50] |
Wang E, Liao Z, Wang L, et al. A combination of pirfenidone and TGF-β inhibition mitigates cystic echinococcosis-associated hepatic injury[J]. Parasitology, 2021, 148(7):767-778.
doi: 10.1017/S0031182021000287 URL |
[1] | . [J]. Clinical Focus, 2024, 39(2): 177-182. |
[2] | . [J]. Clinical Focus, 2024, 39(1): 84-87. |
[3] | . [J]. Clinical Focus, 2023, 38(10): 935-939. |
[4] | . [J]. Clinical Focus, 2023, 38(6): 559-563. |
[5] | Zhang Yuan, Zhou Juan, Li Wenxiang, Liu Jinxiang, Tang Xiaomei, Luo Huijuan. Correlation between pruritus and the prognosis of intrahepatic cholestasis of pregnancy and prediction of its risks [J]. Clinical Focus, 2023, 38(5): 405-411. |
[6] | . [J]. Clinical Focus, 2023, 38(4): 373-376. |
[7] | Cao Yumeng, Zhang Haiyan, Liu Lixin. Correlation between pathological changes and serum ferritin and iron levels in nonalcoholic fatty liver disease: A meta-analysis [J]. Clinical Focus, 2023, 38(3): 197-207. |
[8] | . [J]. Clinical Focus, 2022, 37(9): 846-854. |
[9] | Zhang Limin, Sun Jun. Predictive value of FIB-4 in patients with metabolic-associated fatty liver disease complicated with colorectal adenomatous polyps [J]. Clinical Focus, 2022, 37(4): 334-338. |
[10] | Wang Dandan, Zhang Xiaolan, Deng Zhihua. Clinical characteristic of Primary biliary cholangitis complicating Sjögren syndrome [J]. Clinical Focus, 2022, 37(1): 30-34. |
[11] | Wen Jie. Correlation analysis between atherogenic index of plasma and nonalcoholic fatty liver disease [J]. Clinical Focus, 2022, 37(1): 35-38. |
[12] | Qu Ying, Liu Zhongyang. Relationship between tuberculin test with serum apolipoprotein A-1 and anti-tuberculosis drug-induced liver injury [J]. Clinical Focus, 2022, 37(1): 39-42. |
[13] | Yang Zhibin, Shao Yanfang, Pan Li, Yang Yanxia, Yang Yuxi, Zhao Lihui, Zeng Rongkun, Li Yang, Wang Qiaofeng, Wang Cong, Ma Shiwu. Efficacy of magnesium isoglycyrrhizinate in anti-tuberculosis drug-induced liver injury [J]. Clinical Focus, 2021, 36(11): 972-975. |
[14] | . [J]. Clinical Focus, 2021, 36(9): 856-860. |
[15] | Li Guohuan, Xie Xu, Huang Zhixia, Zhang Mingye, Tang Yunyun. Quantitative evaluation of transient elastography and acoustic radiation force pulse imaging for non-alcoholic fatty liver disease [J]. Clinical Focus, 2021, 36(6): 535-539. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||