Clinical Focus ›› 2022, Vol. 37 ›› Issue (5): 459-462.doi: 10.3969/j.issn.1004-583X.2022.05.014
Previous Articles Next Articles
Received:
2021-10-26
Online:
2022-05-20
Published:
2022-06-22
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.05.014
[1] |
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, et al. Mitochondria in acute myocardial infarction and cardioprotection[J]. EBioMedicine, 2020, 57: 102884.
doi: 10.1016/j.ebiom.2020.102884 URL |
[2] |
Liberale L, Gaul DS, Akhmedov A, et al. Endothelial SIRT6 blunts stroke size and neurological deficit by preserving blood-brain barrier integrity: A translational study[J]. Eur Heart J, 2020, 41(16): 1575-1587.
doi: 10.1093/eurheartj/ehz712 pmid: 31603194 |
[3] |
Sieve I, Münster-Kühnel AK, Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases[J]. Vascul Pharmacol, 2018, 100: 26-33.
doi: 10.1016/j.vph.2017.09.002 URL |
[4] |
Meng L, Zhang Y, Li D, et al. TIMP3 attenuates cerebral ischemia/reperfusioninduced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway[J]. Exp Ther Med, 2021, 22(3): 973.
doi: 10.3892/etm.2021.10405 URL |
[5] |
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117: 76-89.
doi: 10.1016/j.freeradbiomed.2018.01.024 URL |
[6] |
Manning BD, Toker A. AKT/PKB signaling: Navigating the network[J]. Cell, 2017, 169(3): 381-405.
doi: 10.1016/j.cell.2017.04.001 URL |
[7] |
Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635.
doi: S0092-8674(17)30865-6 pmid: 28802037 |
[8] |
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing up just about everywhere: Compartment-specific Akt activation and function in receptor tyrosine kinase signaling[J]. Front Cell Dev Biol, 2019, 7: 70.
doi: 10.3389/fcell.2019.00070 pmid: 31131274 |
[9] |
Wetzel MD, Wenke JC. Mechanisms by which hydrogen sulfide attenuates muscle function following ischemia-reperfusion injury: Effects on Akt signaling, mitochondrial function, and apoptosis[J]. J Transl Med, 2019, 17(1): 33.
doi: 10.1186/s12967-018-1753-7 URL |
[10] |
Jin XF, Wang S, Shen M, et al. Effects of rehabilitation training on apoptosis of nerve cells and the recovery of neural and motor functions in rats with ischemic stroke through the PI3K/Akt and Nrf2/ARE signaling pathways[J]. Brain Res Bull, 2017, 134: 236-245.
doi: 10.1016/j.brainresbull.2017.08.011 URL |
[11] |
Sulaiman D, Li J, Devarajan A, et al. Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway[J]. J Mol Cell Cardiol, 2019, 129: 154-164.
doi: S0022-2828(19)30038-0 pmid: 30802459 |
[12] |
Ye G, Fu Q, Jiang L, et al. Vascular smooth muscle cells activate PI3K/Akt pathway to attenuate myocardial ischemia/reperfusion-induced apoptosis and autophagy by secreting bFGF[J]. Biomed Pharmacother, 2018, 107: 1779-1785.
doi: 10.1016/j.biopha.2018.05.113 URL |
[13] |
Sostre-Colón J, Uehara K, Whitlock AEG, et al. Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and-independent mechanisms[J]. Cell Rep, 2021, 35(7): 109128.
doi: 10.1016/j.celrep.2021.109128 URL |
[14] |
Heusch G. Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning[J]. Circ Res, 2015, 116(4): 674-699.
doi: 10.1161/CIRCRESAHA.116.305348 pmid: 25677517 |
[15] |
Bassino E, Fornero S, Gallo MP, et al. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential[J]. PLoS One, 2015, 10(3): e0119790.
doi: 10.1371/journal.pone.0119790 URL |
[16] |
Bubb KJ, Birgisdottir AB, Tang O, et al. Redox modification of caveolar proteins in the cardiovascular system-role in cellular signalling and disease[J]. Free Radic Biol Med, 2017, 109: 61-74.
doi: 10.1016/j.freeradbiomed.2017.02.012 URL |
[17] |
Ghoti H, Ackerman S, Rivella S, et al. Heparanase level and procoagulant activity are increased in thalassemia and attenuated by janus kinase 2 inhibition[J]. Am J Pathol, 2020, 190(10): 2146-2154.
doi: 10.1016/j.ajpath.2020.07.011 URL |
[18] |
Masola V, Bellin G, Gambaro G, et al. Heparanase: A multitasking protein involved in extracellular matrix (ECM) remodeling and intracellular events[J]. Cells, 2018, 7(12): 236.
doi: 10.3390/cells7120236 URL |
[19] |
Masola V, Zaza G, Gambaro G, et al. Heparanase: A potential new factor involved in the renal epithelial mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury[J]. PLoS One, 2016, 11(7): e0160074.
doi: 10.1371/journal.pone.0160074 URL |
[20] |
Masola V, Zaza G, Bellin G, et al. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury[J]. FASEB J, 2018, 32(2): 742-756.
doi: 10.1096/fj.201700597R URL |
[21] |
Zhang Y, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets[J]. Nat Rev Cardiol, 2020, 17(3): 170-194.
doi: 10.1038/s41569-019-0260-8 URL |
[22] |
Konior A, Schramm A, Czesnikiewicz-Guzik M, et al. NADPH oxidases in vascular pathology[J]. Antioxid Redox Signal, 2014, 20(17): 2794-814.
doi: 10.1089/ars.2013.5607 URL |
[23] |
Manea SA, Constantin A, Manda G, et al. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms[J]. Redox Biol, 2015, 5: 358-366.
doi: 10.1016/j.redox.2015.06.012 URL |
[24] |
Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system[J]. Curr Cardiol Rev, 2018, 14(4): 290-300.
doi: 10.2174/1573403X14666180702152436 pmid: 29962348 |
[25] |
Münzel T, Camici GG, Maack C, et al. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series[J]. J Am Coll Cardiol, 2017, 70(2): 212-229.
doi: 10.1016/j.jacc.2017.05.035 URL |
[26] |
Milkovic L, Cipak GA, Cindric M, et al. Short overview of ROS as cell function regulators and their implications in therapy concepts[J]. Cells, 2019, 8(8): 793.
doi: 10.3390/cells8080793 URL |
[27] |
Kietzmann T, Petry A, Shvetsova A, et al. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system[J]. Br J Pharmacol, 2017, 174(12): 1533-1554.
doi: 10.1111/bph.13792 URL |
[28] |
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis[J]. Circ Res, 2017, 120(4): 713-735.
doi: 10.1161/CIRCRESAHA.116.309326 pmid: 28209797 |
[29] |
Matsushima S, Tsutsui H, Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion[J]. Trends Cardiovasc Med, 2014, 24(5): 202-205.
doi: 10.1016/j.tcm.2014.03.003 URL |
[30] |
Liu HQ, Li J, Liu XL, et al. Folic acid and RAAS blockers in ischemia/reperfusion-induced hepatic injury: A current mechanistic concept for understanding the incidence, significance & outcome[J]. Chem Biol Interact, 2020, 327: 109187.
doi: 10.1016/j.cbi.2020.109187 URL |
[31] |
Ben-Zaken O, Gingis-Velitski S, Vlodavsky I, et al. Heparanase induces Akt phosphorylation via a lipid raft receptor[J]. Biochem Biophys Res Commun, 2007, 361(4): 829-834.
doi: 10.1016/j.bbrc.2007.06.188 URL |
[32] |
Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections[J]. Cell Mol Life Sci, 2020, 77(24): 5059-5077.
doi: 10.1007/s00018-020-03559-y URL |
[33] |
Riaz A, Ilan N, Vlodavsky I, et al. Characterization of heparanase-induced phosphatidylinositol 3-kinase-AKT activation and its integrin dependence[J]. J Biol Chem, 2013, 288(17): 12366-12375.
doi: 10.1074/jbc.M112.435172 URL |
[34] |
Nakanishi A, Wada Y, Kitagishi Y, et al. Link between PI3K/AKT/PTEN pathway and NOX protein in diseases[J]. Aging Dis, 2014, 5(3): 203-211.
doi: 10.14336/AD.2014.0500203 |
[35] |
Cai L, Stevenson J, Geng X, et al. Combining normobaric oxygen with ethanol or hypothermia prevents brain damage from thromboembolic stroke via PKC-Akt-NOX modulation[J]. Mol Neurobiol, 2017, 54(2): 1263-1277.
doi: 10.1007/s12035-016-9695-7 URL |
[36] |
Koundouros N, Poulogiannis G. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer[J]. Front Oncol, 2018, 8: 160.
doi: 10.3389/fonc.2018.00160 pmid: 29868481 |
[37] |
Xia D, Halder B, Godoy C, et al. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis[J]. Free Radic Biol Med, 2020, 147: 139-149.
doi: 10.1016/j.freeradbiomed.2019.11.034 URL |
[38] |
Sack MN, Fyhrquist FY, Saijonmaa OJ, et al. Basic biology of oxidative stress and the cardiovascular system: Part 1 of a 3-part series[J]. J Am Coll Cardiol, 2017, 70(2): 196-211.
doi: 10.1016/j.jacc.2017.05.034 URL |
[39] |
McGee MA, Abdel-Rahman AA. Enhanced vascular PI3K/Akt-NOX signaling underlies the peripheral NMDAR-mediated pressor response in conscious rats[J]. J Cardiovasc Pharmacol, 2014, 63(5): 395-405.
doi: 10.1097/FJC.0000000000000059 URL |
[40] |
Moccetti F, Brown E, Xie A, et al. Myocardial infarction produces sustained proinflammatory endothelial activation in remote arteries[J]. J Am Coll Cardiol, 2018, 72(9): 1015-1026.
doi: 10.1016/j.jacc.2018.06.044 URL |
[41] |
Mortezaee K, Goradel NH, Amini P, et al. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy[J]. Curr Mol Pharmacol, 2019, 12(1): 50-60.
doi: 10.2174/1874467211666181010154709 pmid: 30318012 |
[42] |
Shimura T, Sasatani M, Kamiya K, et al. Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in low dose irradiated human fibroblasts[J]. Oncotarget, 2016, 7(3): 3559-70.
doi: 10.18632/oncotarget.6518 URL |
[43] |
Schnelle M, Sawyer I, Anilkumar N, et al. NADPH oxidase-4 promotes eccentric cardiac hypertrophy in response to volume overload[J]. Cardiovasc Res, 2021, 117(1): 178-187.
doi: 10.1093/cvr/cvz331 pmid: 31821410 |
[44] |
Zhao QD, Viswanadhapalli S, Williams P, et al. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways[J]. Circulation, 2015, 131(7): 643-655.
doi: 10.1161/CIRCULATIONAHA.114.011079 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||