Clinical Focus ›› 2023, Vol. 38 ›› Issue (1): 88-92.doi: 10.3969/j.issn.1004-583X.2023.01.015
Previous Articles Next Articles
Received:
2022-09-14
Online:
2023-01-20
Published:
2023-03-03
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.01.015
[1] |
Muntner P, Carey RM, Gidding S, et al. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline[J]. Circulation, 2018, 137(2): 109-118.
doi: 10.1161/CIRCULATIONAHA.117.032582 pmid: 29133599 |
[2] |
Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging[J]. Cell Stem Cell, 2018, 22(4): 589-599.e5.
doi: S1934-5909(18)30121-8 pmid: 29625071 |
[3] |
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
doi: 10.1016/S2468-2667(20)30185-7 pmid: 33271079 |
[4] |
Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: A systematic review and meta-analysis[J]. JAMA, 2020, 323(19): 1934-1944.
doi: 10.1001/jama.2020.4249 pmid: 32427305 |
[5] |
Zhou R, Wei S, Wang Y, et al. Pulse pressure is associated with rapid cognitive decline over 4 years: A population-based cohort study[J]. Brain Sci, 2022, 12(12):1691.
doi: 10.3390/brainsci12121691 URL |
[6] |
Webb AJS, Lawson A, Wartolowska K, et al. Aortic stiffness, pulse pressure, and cerebral pulsatility progress despite best medical management: The OXVASC cohort[J]. Stroke, 2022, 53(4): 1310-1317.
doi: 10.1161/STROKEAHA.121.035560 URL |
[7] |
Mahinrad S, Sorond FA, Gorelick PB. Hypertension and cognitive dysfunction: A review of mechanisms, life-course observational studies and clinical trial results[J]. Rev Cardiovasc Med, 2021, 22(4): 1429-1449.
doi: 10.31083/j.rcm2204148 URL |
[8] |
Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension[J]. Circ Res, 2019, 124(7): 1025-1044.
doi: 10.1161/CIRCRESAHA.118.313260 pmid: 30920929 |
[9] |
Muhire G, Iulita MF, Vallerand D, et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits[J]. J Am Heart Assoc, 2019, 8(9): e011630.
doi: 10.1161/JAHA.118.011630 URL |
[10] |
Faraco G, Sugiyama Y, Lane D, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension[J]. J Clin Invest, 2016, 126(12): 4674-4689.
doi: 86950 pmid: 27841763 |
[11] |
Wiedenhoeft T, Tarantini S, Nyúl-Tóth Á, et al. Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice[J]. Geroscience, 2019, 41(6): 711-725.
doi: 10.1007/s11357-019-00102-1 pmid: 31654270 |
[12] |
Tarantini S, Yabluchanskiy A, Csipo T, et al. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging[J]. Geroscience, 2019, 41(5): 533-542.
doi: 10.1007/s11357-019-00101-2 pmid: 31679124 |
[13] |
Liang ES, Bai WW, Wang H, et al. PARP-1 (poly[ADP-ribose] polymerase 1) inhibition protects from Ang II (angiotensin II)-induced abdominal aortic aneurysm in mice[J]. Hypertension, 2018, 72(5): 1189-1199.
doi: 10.1161/HYPERTENSIONAHA.118.11184 URL |
[14] |
Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice[J]. Aging Cell, 2018, 17(2):e12731.
doi: 10.1111/acel.12731 URL |
[15] |
Power MC, Schneider AL, Wruck L, et al. Life-course blood pressure in relation to brain volumes[J]. Alzheimers Dement, 2016, 12(8): 890-899.
doi: 10.1016/j.jalz.2016.03.012 pmid: 27139841 |
[16] |
Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: From pathophysiology to public health[J]. Nat Rev Nephrol, 2021, 17(10): 639-654.
doi: 10.1038/s41581-021-00430-6 pmid: 34127835 |
[17] |
Mahinrad S, Shownkeen M, Sedaghat S, et al. Vascular health across young adulthood and midlife cerebral autoregulation, gait, and cognition[J]. Alzheimers Dement, 2021, 17(5): 745-754.
doi: 10.1002/alz.12246 pmid: 33283978 |
[18] |
Kangussu LM, Rocha NP, Valadão PAC, et al. Renin-aangiotensin system in Huntington's disease: Evidence from animal models and human patients[J]. Int J Mol Sci, 2022, 23(14): 7686.
doi: 10.3390/ijms23147686 URL |
[19] |
Jackson L, Eldahshan W, Fagan SC, et al. Within the brain: The renin angiotensin system[J]. Int J Mol Sci, 2018, 19(3):876.
doi: 10.3390/ijms19030876 URL |
[20] |
Fouda AY, Fagan SC, Ergul A. Brain vasculature and cognition[J]. Arterioscler Thromb Vasc Biol, 2019, 39(4): 593-602.
doi: 10.1161/ATVBAHA.118.311906 pmid: 30816798 |
[21] |
Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: A review[J]. Curr Hypertens Rep, 2017, 19(3): 24.
doi: 10.1007/s11906-017-0724-3 pmid: 28299725 |
[22] |
Ungvari Z, Tarantini S, Nyúl-Tóth Á, et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: From increased cellular senescence to the pathogenesis of age-related vascular diseases[J]. Geroscience, 2019, 41(6): 727-738.
doi: 10.1007/s11357-019-00107-w pmid: 31655958 |
[23] |
Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(7): 853-863.
doi: 10.1093/gerona/glx177 URL |
[24] |
Fulop GA, Kiss T, Tarantini S, et al. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation[J]. Geroscience, 2018, 40(5-6): 513-521.
doi: 10.1007/s11357-018-0047-6 pmid: 30470983 |
[25] |
Kerkhofs D, van Hagen BT, Milanova IV, et al. Pharmacological depletion of microglia and perivascular macrophages prevents vascular cognitive impairment in Ang II-induced hypertension[J]. Theranostics, 2020, 10(21): 9512-9527.
doi: 10.7150/thno.44394 pmid: 32863942 |
[26] |
Yang Y, Kimura-Ohba S, Thompson JF, et al. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury[J]. Neurobiol Dis, 2018, 114: 95-110.
doi: S0969-9961(18)30044-5 pmid: 29486300 |
[27] |
Santisteban MM, Ahn SJ, Lane D, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension[J]. Hypertension, 2020, 76(3): 795-807.
doi: 10.1161/HYPERTENSIONAHA.120.15581 pmid: 32654560 |
[28] |
Fulop GA, Ahire C, Csipo T, et al. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice[J]. Geroscience, 2019, 41(5): 575-589.
doi: 10.1007/s11357-019-00110-1 pmid: 31691147 |
[29] |
Miyanohara J, Kakae M, Nagayasu K, et al. TRPM2 channel aggravates CNS inflammation and cognitive impairment via activation of microglia in chronic cerebral hypoperfusion[J]. J Neurosci, 2018, 38(14): 3520-3533.
doi: 10.1523/JNEUROSCI.2451-17.2018 pmid: 29507145 |
[30] | 吴荣兴, 廖仁引, 周卫国, 等. SWI评估老年高血压患者脑微出血与认知功能障碍的相关性研究[J]. 现代医用影像学, 2022, 31(10): 1857-1860. |
[31] |
Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities[J]. Alzheimers Dement (N Y), 2019, 5: 107-117.
doi: 10.1016/j.trci.2019.02.001 pmid: 31011621 |
[32] |
Low A, Prats-Sedano MA, Stefaniak JD, et al. CAIDE dementia risk score relates to severity and progression of cerebral small vessel disease in healthy midlife adults: The PREVENT-Dementia study[J]. J Neurol Neurosurg Psychiatry, 2022, 93(5): 481-490.
doi: 10.1136/jnnp-2021-327462 pmid: 35135868 |
[33] |
Xu W, Bai Q, Dong Q, et al. Blood-brain barrier dysfunction and the potential mechanisms in chronic cerebral hypoperfusion induced cognitive impairment[J]. Front Cell Neurosci, 2022, 16: 870674.
doi: 10.3389/fncel.2022.870674 URL |
[34] |
Guevarra AC, Ng SC, Saffari SE, et al. Age moderates associations of hypertension, white matter hyperintensities, and cognition[J]. J Alzheimers Dis, 2020, 75(4): 1351-1360.
doi: 10.3233/JAD-191260 pmid: 32417773 |
[35] | 王晓旭. 高血压患者脑白质病变与认知障碍的相关性[J]. 慢性病学杂志, 2022, 23(10): 1494-1497. |
[36] |
Ingo C, Kurian S, Higgins J, et al. Vascular health and diffusion properties of normal appearing white matter in midlife[J]. Brain Commun, 2021, 3(2): fcab080.
doi: 10.1093/braincomms/fcab080 URL |
[37] |
Weaver NA, Doeven T, Barkhof F, et al. Cerebral amyloid burden is associated with white matter hyperintensity location in specific posterior white matter regions[J]. Neurobiol Aging, 2019, 84: 225-234.
doi: S0197-4580(19)30279-9 pmid: 31500909 |
[38] |
Chen X, Chen L, Lin G, et al. White matter damage as a consequence of vascular dysfunction in a spontaneous mouse model of chronic mild chronic hypoperfusion with eNOS deficiency[J]. Mol Psychiatry, 2022, 27(11): 4754-4769.
doi: 10.1038/s41380-022-01701-9 URL |
[39] |
Breteler MM. Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study[J]. Ann N Y Acad Sci, 2000, 903: 457-465.
doi: 10.1111/j.1749-6632.2000.tb06399.x URL |
[40] |
Jeon SY, Byun MS, Yi D, et al. Influence of hypertension on brain amyloid deposition and Alzheimer's disease signature neurodegeneration[J]. Neurobiol Aging, 2019, 75: 62-70.
doi: S0197-4580(18)30402-0 pmid: 30553154 |
[41] |
Lane CA, Barnes J, Nicholas JM, et al. Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): An epidemiological study[J]. Lancet Neurol, 2019, 18(10): 942-952.
doi: S1474-4422(19)30228-5 pmid: 31444142 |
[42] |
Kim HJ, Park S, Cho H, et al. Assessment of extent and role of tau in subcortical vascular cognitive impairment using 18F-AV1451 positron emission tomography imaging[J]. JAMA Neurol, 2018, 75(8): 999-1007.
doi: 10.1001/jamaneurol.2018.0975 pmid: 29799981 |
[43] | 吴浩, 符丽珍, 赵勇, 等. 老年脑梗死后血管性认知功能障碍的危险因素及与血清同型半胱氨酸、淀粉样蛋白A、Tau蛋白的关系[J]. 实用医院临床杂志, 2022, 19(3): 9-13. |
[44] |
Nyúl-Tóth Á, Tarantini S, Kiss T, et al. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease[J]. Geroscience, 2020, 42(6): 1685-1698.
doi: 10.1007/s11357-020-00256-3 URL |
[45] |
Ma Q, Ineichen BV, Detmar M, et al. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice[J]. Nat Commun, 2017, 8(1): 1434.
doi: 10.1038/s41467-017-01484-6 pmid: 29127332 |
[46] |
Mortensen KN, Sanggaard S, Mestre H, et al. Impaired glymphatic transport in spontaneously hypertensive rats[J]. J Neurosci, 2019, 39(32): 6365-6377.
doi: 10.1523/JNEUROSCI.1974-18.2019 pmid: 31209176 |
[1] | Liu Yi, Cui Kun, Liu Chang, Zhao Haotian, Li Li, Xue Hongyuan. Correlation between serum secreted frizzled-related protein 5 and early renal damage in patients with essential hypertension [J]. Clinical Focus, 2023, 38(12): 1073-1077. |
[2] | Jiang Ji, Zhu Xiaogang, Jiang Shan, Dawa Zhaba, Cen Qiang. Risk factors of proteinuria in hypertensive people living at high altitude for generations [J]. Clinical Focus, 2023, 38(12): 1086-1090. |
[3] | Xu Yang, Xue Ling. Influencing factors for mild cognitive impairment in type H hypertension patients combined with type 2 diabetes mellitus [J]. Clinical Focus, 2023, 38(10): 887-892. |
[4] | . [J]. Clinical Focus, 2023, 38(2): 181-184. |
[5] | Yin Yikun, Yin Xunwei, Wang Jialin, Sun Junzhi. Impacts of Tai Chi exercise cycle on blood pressure and cardiovascular risk factors in essential hypertension: a systematic review and meta-analysis [J]. Clinical Focus, 2022, 37(7): 599-606. |
[6] | An Qinyan, Jiang Rong, Kang Bin, Du Ming, Zhou Renming, Zhao Hongjuan, Duan Yi, Lu Fei, Liu Jinming. Levels and clinical significance of RDW, NT-proBNP, BigET-1, HMGB1 in patients with idiopathic pulmonary arterial hypertension [J]. Clinical Focus, 2021, 36(11): 1001-1004. |
[7] | . [J]. Clinical Focus, 2021, 36(8): 744-748. |
[8] | Gong Tao, Hu Yueyuan, Gao Yun, Guo Chang, Shen Huinan, Wang Dongyu. Relationship between H-type hypertension and severity of neurological deficit in early acute cerebral infarction of LAA [J]. Clinical Focus, 2021, 36(7): 612-615. |
[9] | . [J]. Clinical Focus, 2021, 36(6): 566-568. |
[10] | . [J]. Clinical Focus, 2021, 36(3): 270-276. |
[11] | Liu Xiaoteng, Shan Weichao, Hou Ruitian, Lin Jinping, Gao Yu, Jin Fengbiao, Liu Chang. Correlation between serum hypersensitive C-reactive protein, lipoprotein-related phospholipase A2 and senile essential hypertension complicated with type 2 diabetes [J]. Clinical Focus, 2021, 36(1): 25-29. |
[12] | Liang Yuling, Li Wenxi, Gu Xuewen. Randomized controlled trial of Tianma Gouteng Decoction and irbesartan in treatment of essential hypertension [J]. Clinical Focus, 2020, 35(12): 1097-1100. |
[13] | Zhu Bin;Wang Yongxia. Correlation between carotid plaque and blood pressure variation in patients with hypertension [J]. Clinical Focus, 2015, 30(12): 1360-1362. |
[14] | Quan Feng;Fan Xuemei;Fang Wenlong. Clinical study of systemic lupus erythematosus associated pulmonary hypertension [J]. Clinical Focus, 2015, 30(12): 1402-1.40414e+007. |
[15] | Wang Hongyi. Screening of secondary hypertension [J]. Clinical Focus, 2015, 30(11): 1202-1205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||