Clinical Focus ›› 2021, Vol. 36 ›› Issue (1): 84-88.doi: 10.3969/j.issn.1004-583X.2021.01.018
Previous Articles Next Articles
Received:
2020-06-25
Online:
2021-01-20
Published:
2021-01-16
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.01.018
[1] | Bhattacharjee S, Lukiw WJ . Alzheimer's disease and the microbiome[J]. Front Cell Neurosci, 2013,7(153):153. |
[2] |
Galland L. The gut microbiome and the brain[J]. J Med Food, 2014,17(12):1261-1272.
doi: 10.1089/jmf.2014.7000 pmid: 25402818 |
[3] |
Liu Y, Du Y, Liu W, et al. Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population[J]. PLoS One, 2013;, 8(2):e56639.
doi: 10.1371/journal.pone.0056639 URL |
[4] |
Tükel C, Wilson RP, Nishimori JH, et al. Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2[J]. Cell Host Microbe, 2009,6(1):45-53.
doi: 10.1016/j.chom.2009.05.020 URL |
[5] |
Youssef NH, Couger MB, McCully AL, et al. Assessing the global phylum level diversity within the bacterial domain: A review[J]. J Adv Res, 2015,6(3):269-282.
doi: 10.1016/j.jare.2014.10.005 pmid: 26257925 |
[6] |
Lukiw WJ. The microbiome, microbial-generated proinflammatory neurotoxins, and Alzheimer's disease[J]. J Sport Health Sci, 2016,5(4):393-396.
doi: 10.1016/j.jshs.2016.08.008 URL |
[7] |
Sassá MF, Saturi AE, Souza LF, et al. Response of macrophage Toll-like receptor 4 to a Sporothrix schenckii lipid extract during experimental sporotrichosis[J]. Immunology, 2009,128(2):301-309.
doi: 10.1111/imm.2009.128.issue-2 URL |
[8] |
Kram V, Kilts TM, Bhattacharyya N, et al. Small leucine rich proteoglycans, a novel link to osteoclastogenesis[J]. Sci Rep, 2017,7(1):12627.
doi: 10.1038/s41598-017-12651-6 URL |
[9] |
Blanco LP, Evans ML, Smith DR, et al. Diversity, biogenesis and function of microbial amyloids[J]. Trends Microbiol, 2012,20:66-73.
doi: 10.1016/j.tim.2011.11.005 URL |
[10] |
Zhao Y, Dua P, Lukiw WJ. Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer's Disease (AD)[J]. J Alzheimers Dis Parkinsonism, 2015,5(1):177.
pmid: 25977840 |
[11] | Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD)[J]. Front Aging Neurosci, 2015,7:9. |
[12] |
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome cell host microbe[J]. Cell Host Microbe, 2015,17:565-576.
doi: 10.1016/j.chom.2015.04.011 URL |
[13] |
von Mikecz A. Pathology and function of nuclear amyloid. Protein homeostasis matters[J]. Nucleus, 2014,5(4):311-317.
doi: 10.4161/nucl.29404 pmid: 25482120 |
[14] |
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection[J]. FEMS Microbiol Rev, 2016,40(4):480-493.
doi: 10.1093/femsre/fuw007 URL |
[15] | Barczynska R, Slizewska K, Litwin M, et al. Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children[J]. Acta Biochim Pol, 2016,63(2):261-266. |
[16] |
Rhee SH. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut[J]. Intest Res, 2014,12(2):90-95.
doi: 10.5217/ir.2014.12.2.90 URL |
[17] |
Xiao X, Sankaranarayanan K, Khosla C. Biosynjournal and structure-activity relationships of the lipid a family of glycolipids[J]. Curr Opin Chem Biol, 2017,40:127-137.
doi: 10.1016/j.cbpa.2017.07.008 URL |
[18] |
Choi VM, Herrou J, Hecht AL, et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice[J]. Nat Med, 2016,22(5):563-567.
doi: 10.1038/nm.4077 URL |
[19] |
Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations[J]. Nature, 2016,529(7585):212-215.
doi: 10.1038/nature16504 pmid: 26762459 |
[20] |
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis[J]. J Clin Invest, 2014,124(10):4166-4172.
doi: 10.1172/JCI72334 URL |
[21] |
Lukiw WJ. Gastrointestinal (GI) tract microbiome-derived neurotoxins-potent neuro-inflammatory signals from the GI tract via the systemic circulation into the brain[J]. Front Cell Infect Microbiol, 2020,10:22.
doi: 10.3389/fcimb.2020.00022 URL |
[22] |
Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation[J]. Brain Behav Immun, 2017,60:1-12.
doi: 10.1016/j.bbi.2016.03.010 URL |
[23] |
Rivest S. Regulation of innate immune responses in the brain[J]. Nat Rev Immunol, 2009,9(6):429-439.
doi: 10.1038/nri2565 URL |
[24] |
Sasaki H, White SH. Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4 receptors[J]. Biophys J, 2008,95(2):986-993.
doi: 10.1529/biophysj.108.129197 URL |
[25] |
Dowhan W. Lipids and extracellular materials[J]. Annu Rev Biochem, 2014,83:45-49.
doi: 10.1146/annurev-biochem-010314-112017 URL |
[26] | Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer's Disease[J]. Front Microbiol, 2016,7:1544. |
[27] |
Chen SG, Stribinskis V, Rane MJ, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and caenorhabditis elegans[J]. Sci Rep, 2016,6:34477.
doi: 10.1038/srep34477 URL |
[28] | Javan GT, Finley SJ, Abidin Z, et al. The thanatomicrobiome: A missing piece of the microbial puzzle of death[J]. Front Microbiol, 2016,7:225. |
[29] |
Liu YJ, Chen J, Li X, et al. Research progress on adenosine in central nervous system diseases[J]. CNS Neurosci Ther, 2019,25(9):899-910.
doi: 10.1111/cns.v25.9 URL |
[30] |
Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core[J]. Environ Microbiol, 2009,11(10):2574-2584.
doi: 10.1111/emi.2009.11.issue-10 URL |
[31] |
Walker WA. Initial intestinal colonization in the human infant and immune homeostasis[J]. Ann Nutr Metab, 2013,63(Suppl 2):8-15.
doi: 10.1159/000354907 URL |
[32] |
Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals[J]. Pharmacol Res, 2010,61(3):219-225.
doi: 10.1016/j.phrs.2009.11.001 URL |
[33] | Wang N, Huo G, Li C, et al. Recent progress in research on probiotics effect on nervous system diseases[J]. Food Sci, 2019,40(11):338-342. |
[34] |
Anand S, Mande SS. Diet, microbiota and gut-lung connection[J]. Front Microbiol, 2018,9:2147.
doi: 10.3389/fmicb.2018.02147 URL |
[35] |
Leclercq S, Matamoros S, Cani PD, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity[J]. Proc Natl Acad Sci USA, 2014,111(42):E4485-E4493.
doi: 10.1073/pnas.1415174111 URL |
[36] |
Takashima A. Mechanism of neurodegeneration through tau and therapy for Alzheimer's disease[J]. J Sport Health Sci, 2016,5(4):391-392.
doi: 10.1016/j.jshs.2016.08.009 pmid: 30356578 |
[37] |
Grigoleit JS, Kullmann JS, Wolf OT, et al. Dose-dependent effects of endotoxin on neurobehavioral functions in humans[J]. PLoS One, 2011,6:e28330.
doi: 10.1371/journal.pone.0028330 URL |
[38] | Chen D. Neuroprotective effect of amorphophallus canpanulatus in STZ induced Alzheimer rat model[J]. Afr J Tradit Complement Altern Med, 2016,13(4):47-54. |
[39] |
Yuyama K, Takahashi K, Usuki S, et al. Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer's disease[J]. Sci Rep, 2019,9(1):16827.
doi: 10.1038/s41598-019-53394-w URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||