Clinical Focus ›› 2024, Vol. 39 ›› Issue (5): 401-407.doi: 10.3969/j.issn.1004-583X.2024.05.003
Previous Articles Next Articles
Liu Xiuying1, Cui Kaige2, Liu Liying2, Wu Yankai2, Yu Jiaqi2, Yang Jiping2()
Received:
2024-02-22
Online:
2024-05-20
Published:
2024-07-05
Contact:
Yang Jiping, Email: CLC Number:
Liu Xiuying, Cui Kaige, Liu Liying, Wu Yankai, Yu Jiaqi, Yang Jiping. Exploration of central mechanisms for post-stroke fatigue based on resting-state functional magnetic resonance imaging[J]. Clinical Focus, 2024, 39(5): 401-407.
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.05.003
组别 | 例数 | 性别[例(%)] | 年龄 (岁) | NIHSS评分 (分) | |
---|---|---|---|---|---|
男性 | 女性 | ||||
PSF组 | 40 | 26(65.0) | 14(35.0) | 54.27±10.27 | 3.70±2.30 |
NPSF组 | 35 | 24(68.6) | 11(31.4) | 54.23±9.66 | 2.20±1.80 |
统计值 | χ2=0.107 | t=0.153 | t=3.126 | ||
P值 | 0.809 | 0.832 | 0.096 |
Tab.1 Comparison of general information and NIHSS scores between groups in the acute phase of cerebral infarction
组别 | 例数 | 性别[例(%)] | 年龄 (岁) | NIHSS评分 (分) | |
---|---|---|---|---|---|
男性 | 女性 | ||||
PSF组 | 40 | 26(65.0) | 14(35.0) | 54.27±10.27 | 3.70±2.30 |
NPSF组 | 35 | 24(68.6) | 11(31.4) | 54.23±9.66 | 2.20±1.80 |
统计值 | χ2=0.107 | t=0.153 | t=3.126 | ||
P值 | 0.809 | 0.832 | 0.096 |
组别 | 例数 | AUC | ||||
---|---|---|---|---|---|---|
σ | γ | λ | Cp | Lp | ||
PSF组 | 40 | 0.58±0.13 | 0.67±0.14 | 0.40±0.02 | 0.20±0.01 | 0.75±0.07 |
NPSF组 | 35 | 0.62±0.12 | 0.71±0.13 | 0.39±0.02 | 0.20±0.01 | 0.74±0.08 |
统计值 | t=1.522 | t=1.333 | t=1.175 | t=0.487 | t=1.004 | |
P值 | 0.132 | 0.187 | 0.244 | 0.628 | 0.319 |
Tab.2 Comparison of characteristic parameters of small-world properties between groups in the acute period of cerebral infarction
组别 | 例数 | AUC | ||||
---|---|---|---|---|---|---|
σ | γ | λ | Cp | Lp | ||
PSF组 | 40 | 0.58±0.13 | 0.67±0.14 | 0.40±0.02 | 0.20±0.01 | 0.75±0.07 |
NPSF组 | 35 | 0.62±0.12 | 0.71±0.13 | 0.39±0.02 | 0.20±0.01 | 0.74±0.08 |
统计值 | t=1.522 | t=1.333 | t=1.175 | t=0.487 | t=1.004 | |
P值 | 0.132 | 0.187 | 0.244 | 0.628 | 0.319 |
Fig.2 Correlation analysis between groups in the acute period of cerebral infarction Note : The connection between different brain regions indicates functional connection, red indicates enhancement, and blue indicates weakening
组别 | 例数 | 性别[例(%)] | 年龄(岁) | |
---|---|---|---|---|
男性 | 女性 | |||
PSF组 | 34 | 24(70.6) | 10(29.4) | 56.38±8.77 |
NPSF组 | 20 | 12(60.0) | 8(40.0) | 52.85±10.21 |
统计值 | χ2=0.635 | t=1.345 | ||
P值 | 0.425 | 0.537 |
Tab.3 Comparison of general information between groups in the chronic phase of cerebral infarction
组别 | 例数 | 性别[例(%)] | 年龄(岁) | |
---|---|---|---|---|
男性 | 女性 | |||
PSF组 | 34 | 24(70.6) | 10(29.4) | 56.38±8.77 |
NPSF组 | 20 | 12(60.0) | 8(40.0) | 52.85±10.21 |
统计值 | χ2=0.635 | t=1.345 | ||
P值 | 0.425 | 0.537 |
组别 | 例数 | AUC | ||||
---|---|---|---|---|---|---|
σ | γ | λ | Cp | Lp | ||
PSF组 | 40 | 0.57±0.09 | 0.65±0.10 | 0.39±0.01 | 0.20±0.01 | 0.74±0.05 |
NPSF组 | 35 | 0.56±0.13 | 0.66±0.14 | 0.40±0.02 | 0.20±0.01 | 0.77±0.08 |
统计值 | t=0.197 | t=0.198 | t=1.890 | t=2.029 | t=1.335 | |
P值 | 0.845 | 0.828 | 0.036 | 0.048 | 1.145 |
Tab.4 Comparison of characteristic parameters of small world attributes between groups in chronic phase of cerebral infarction
组别 | 例数 | AUC | ||||
---|---|---|---|---|---|---|
σ | γ | λ | Cp | Lp | ||
PSF组 | 40 | 0.57±0.09 | 0.65±0.10 | 0.39±0.01 | 0.20±0.01 | 0.74±0.05 |
NPSF组 | 35 | 0.56±0.13 | 0.66±0.14 | 0.40±0.02 | 0.20±0.01 | 0.77±0.08 |
统计值 | t=0.197 | t=0.198 | t=1.890 | t=2.029 | t=1.335 | |
P值 | 0.845 | 0.828 | 0.036 | 0.048 | 1.145 |
Fig.3 Correlation analysis between PSF group and NPSF group in the chronic phase of cerebral infarction Note : The connection between different brain regions indicates functional connection, red indicates enhancement, and blue indicates weakening
[1] | Kimura H. Stroke[J]. Brain Nerve, 2020, 72(4):311-321. |
[2] |
Alghamdi I, Ariti C, Williams A, et al. Prevalence of fatigue after stroke: A systematic review and meta-analysis[J]. Eur Stroke J, 2021, 6(4):319-332.
doi: 10.1177/23969873211047681 pmid: 35342803 |
[3] | 任思强, 张茜, 代玉玺, 等. 脑卒中后疲劳发病机制及影响因素的研究进展[J]. 临床神经病学杂志, 2021, 34(3):223-226. |
[4] | 康静, 宋润珞, 郑子秀, 等. 脑卒中后疲劳危险因素及干预措施研究进展[J]. 全科护理, 2022, 20(24):3353-3357. |
[5] | Kim SG. Biophysics of BOLD fMRI investigated with animal models[J]. Magn Reson, 2018, 292:82-89. |
[6] |
Ji JL, Spronk M, Kulkarni K, et al. Mapping the human brain's cortical-subcortical functional network organization[J]. Neuroimage, 2019, 185:35-57.
doi: S1053-8119(18)31965-7 pmid: 30291974 |
[7] |
Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected brain[J]. Science, 2022, 378(6619):505-510.
doi: 10.1126/science.abq2591 pmid: 36378968 |
[8] |
Li L, Bachevalier J, Hu X, et al. Topology of the structural social brain network in typical adults[J]. Brain Connect, 2018, 8(9):537-548.
doi: 10.1089/brain.2018.0592 pmid: 30280929 |
[9] |
Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4):305-317.
doi: 10.1177/1971400917697342 pmid: 28353416 |
[10] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9):666-682. |
[11] | Syed MJ, Millis SR, Marawar R, et al. Rasch analysis of fatigue severity scale in patients with epilepsy[J]. Epilepsy Behav, 2022, 130:108688. |
[12] |
Seitzman BA, Snyder AZ, Leuthardt EC, et al. The state of resting state networks[J]. Top Magn Reson Imaging, 2019, 28(4):189-196.
doi: 10.1097/RMR.0000000000000214 pmid: 31385898 |
[13] | Conrad J, Habs M, Ruehl M, et al. Structural reorganization of the cerebral cortex after vestibulo-cerebellar stroke[J]. Neuroimage Clin, 2021, 30:102603. |
[14] | Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: A systematic review and meta-analysis[J]. Neuroeng Rehabil, 2022, 19(1):24. |
[15] | De Doncker W, Ondobaka S, Kuppuswamy A. Effect of transcranial direct current stimulation on post-stroke fatigue[J]. Neurol, 2021, 268(8):2831-2842. |
[16] | Gratton C, Nomura EM, Pérez F, et al. Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain[J]. Cogn Neurosci, 2012, 24(6):1275-1285. |
[17] | Cotter G, Salah Khlif M, Bird L, et al. Post-stroke fatigue is associated with resting state posterior hypoactivity and prefrontal hyperactivity[J]. Int J Stroke, 2021, 17(8):906-913. |
[18] | Schaechter JD, Kim M, Hightower BG, et al. Disruptions in structural and functional connectivity relate to poststroke fatigue[J]. Brain Connect, 2023, 13(1):15-27. |
[19] | 杨华, 侯昌月, 卢竞, 等. 作曲家大脑的静息态脑功能网络研究[J]. 中国生物医学工程学报, 2016, 35(5):612-615. |
[20] |
Yang H, Zhang C, Liu C, et al. Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment[J]. Epilepsy Behav, 2018, 81:41-48.
doi: S1525-5050(17)30978-2 pmid: 29475172 |
[21] | Shan ZY, Finegan K, Bhuta S, et al. Brain function characteristics of chronic fatigue syndrome: A task fMRI study[J]. Neuroimage Clin, 2018, 19:279-286. |
[22] | 黄钟馨, 罗天友, 彭娟, 等. 2型糖尿病患者默认网络和视觉网络的独立成分分析研究[J]. 重庆医科大学学报, 2020, 45(12):1696-1700. |
[23] |
Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: A resting-state functional MRI study[J]. Diabetes, 2014, 63(2): 749-760.
doi: 10.2337/db13-0519 pmid: 24353185 |
[24] | 郭溪, 张雪, 张宁男楠, 等. 视神经脊髓炎患者背侧注意网络的静息态功能磁共振研究[J]. 中国临床医学影像杂志, 2018, 29(8):539-542. |
[25] | Rajan A, Meyyappan S, Liu Y, et al. The microstructure of attentional control in the dorsal attention network[J]. Cogn Neurosci, 2021, 33(6):965-983. |
[26] | Keane BP, Krekelberg B, Mill RD, et al. Dorsal attention network activity during perceptual organization is distinct in schizophrenia and predictive of cognitive disorganization[J]. Eur J Neurosci, 2023, 57(3):458-478. |
[27] |
Doucet G, Osipowicz K, Sharan A, et al. Extratemporal functional connectivity impairments at rest are related to memory performance in mesial temporal epilepsy[J]. Hum Brain Mapp, 2013, 34:2202-2016.
doi: 10.1002/hbm.22059 pmid: 22505284 |
[28] | Voets NL, Zamboni G, Stokes MG, et al. Aberrant func-tional connectivity in dissociable hippocampal networks is associated with deficits in memory[J]. J Neurosci, 2014, 34:4920-4928. |
[29] | Ji S, Zhang H, Qin W, et al. Effect of acupuncture stimulation of hegu (LI4) and taichong (LR3) on the resting-state networks in Alzheimer's disease: Beyond the default mode network[J]. Neural Plast, 2021, 8(2021):8876873. |
[30] | 吴桃宇. 睡眠剥夺及剥夺后小睡对工作记忆任务的影响[D]. 重庆: 西南大学, 2017. |
[31] | Fu CH, Li KS, Ning YZ, et al. Altered effective connectivity of resting state networks by acupuncture stimulation in stroke patients with left hemiplegia: A multivariate granger analysis[J]. Medicine (Baltimore), 2017, 96(47):e8897. |
[32] | Lu L, Zhang J, Li F, et al. Aberrant static and dynamic functional network connectivity in acute mild traumatic brain injury with cognitive impairment[J]. Clin Neuroradiol, 2022, 32(1):205-214. |
[33] |
Herbet G, Duffau H. Revisiting the functional anatomy of the human brain: Toward a meta-networking theory of cerebral functions[J]. Physiol Rev, 2020, 100(3):1181-1228.
doi: 10.1152/physrev.00033.2019 pmid: 32078778 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||