[1] |
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017,12(12):2032-2045.
doi: 10.2215/CJN.11491116
URL
|
[2] |
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016,375(9):905-906.
doi: 10.1056/NEJMc1602469
URL
|
[3] |
冉春华. 早期糖尿病肾病诊断中尿微量白蛋白检测价值分析[J]. 医药前沿, 2015,5(17):227.
|
[4] |
Diabetes Control and Complications Trial Research Group, Nathan DM, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993,329(14):977-986.
doi: 10.1056/NEJM199309303291401
URL
|
[5] |
Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial[J]. Diabetes Care, 2008,31(11):2198-2202.
doi: 10.2337/dc08-0864
pmid: 18650371
|
[6] |
Ceriello A, De Cosmo S, Rossi MC, et al. Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes[J]. Diabetes Obes Metab, 2017,19(11):1570-1578.
doi: 10.1111/dom.2017.19.issue-11
URL
|
[7] |
Zhang XM, Li PF, Hou JN. Blood glucose profiles in East Asian and Caucasian injection-naive patients with type 2 diabetes inadequately controlled on oral medication:a pooled analysis[J]. Diabetes Metab Res Rev, 2018,34(8):e3062.
doi: 10.1002/dmrr.v34.8
URL
|
[8] |
Hou X, Wang C, Wang S, et al. Fluctuation between Fasting and 2-H Postload Glucose State Is Associated with Glomerular Hyperfiltration in Newly Diagnosed Diabetes Patients with HbA1c<7%[J]. PLoS One, 2014,9(7):e111173.
doi: 10.1371/journal.pone.0111173
URL
|
[9] |
Zhao ZP, Zhang M, Qi JL, et al. 1520-P: All-cause mortality in Chinese adults with diabetes in association with new indicator generated by the 2-h plasma glucose level subtract fasting plasma glucose level[J]. Diabetes, 2019, 68(Supple1):1520-P.
|
[10] |
顾霖, 陆宏红, 项容. 血糖波动对2型糖尿病患者尿微量白蛋白排泄率的影响[J]. 牡丹江医学院学报, 2014,35(5):49-51.
|
[11] |
Lee CL, Chen CH, Wu MJ, et al. The variability of glycated hemoglobin is associated with renal function decline in patients with type 2 diabetes[J]. Ther Adv Chronic Dis, 2020,3(11):1-10.
|
[12] |
Rozing MP, Møller A, Aabenhus R, et al. Changes in HbA1c during the first six years after the diagnosis of Type 2 diabetes mellitus predict long-term microvascular outcomes[J]. PLoS One, 2019,14(11):e0225230.
doi: 10.1371/journal.pone.0225230
URL
|
[13] |
Chiu WC, Lai YR, Cheng BC, et al. HbA1C variability is strongly associated with development of macroalbuminuria in normal or microalbuminuria in patients with type 2 diabetes mellitus: A six-year follow-up study[J]. Biomed Res Int, 2020,2020:7462158.
|
[14] |
Jin SM, Kim TH, Oh S, et al. Association between the extent of urinary albumin excretion and glycaemic variability indices measured by continuous glucose monitoring[J]. Diabet Med, 2015,32(2):274-279.
doi: 10.1111/dme.12607
URL
|
[15] |
Brownlee M, Hirsch IB. Glycemic variability:a hemoglobin A1c-independent risk factor for diabetic complications[J] JAMA, 2006,295(14):1707-1708.
pmid: 16609094
|
[16] |
Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fuctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes[J]. JAMA, 2006,295(14):1681-1687.
pmid: 16609090
|
[17] |
Ying CJ, Zhou XY, Chang ZZ, et al. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats[J]. Endocrine, 2016,53(1):81-96.
doi: 10.1007/s12020-016-0867-z
URL
|
[18] |
Wu N, Shen H, Liu H, et al. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo[J]. Cardiovasc Diabetol, 2016,15(1):109.
doi: 10.1186/s12933-016-0427-0
URL
|
[19] |
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links[J]. Int J Physiol Pathophysiol Pharmacol, 2019,11(3):45-63.
|
[20] |
El-Osta A, Brasacchio D, Yao DC, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia[J]. J Exp Med, 2008,205(10):2409-2417.
doi: 10.1084/jem.20081188
URL
|
[21] |
Costantino S, Paneni F, Battista R, et al. Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA1c levels[J]. Diabetes, 2017,66(9):2472-2482.
doi: 10.2337/db17-0294
pmid: 28634176
|
[22] |
Gall MA, Hougaard P, Borch-Johnsen K, et al. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study[J]. BMJ, 1997,314(7083):783-788.
pmid: 9080995
|
[23] |
邢小飞. 糖尿病肾病诊断中联合检测尿微量白蛋白、糖化血红蛋白的价值探究[J]. 药品评价, 2018,15(7):16-18.
|
[24] |
Kocak MZ, Aktas G, Duman TT, et al. Is uric acid elevation a random finding or a causative agent of diabetic nephropathy?[J]. Rev Assoc Med Bras (1992), 2019,65(9):1155-1160.
doi: 10.1590/1806-9282.65.9.1156
URL
|
[25] |
Saiki A, Nagayama D, Ohhira M, et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy[J]. Int J Obes (Lond), 2005,29(9):1115-1120.
doi: 10.1038/sj.ijo.0803009
URL
|
[26] |
朱英宁. 空腹血糖(FPG)、糖化血红蛋白(HbA1c)、尿微量白蛋白(um-ALB)联合检测在糖尿病肾病患者的临床应用[J]. 中国继续医学教育, 2018, (14):65-67.
|