[1] |
World health organization. WHO Report 2018.[EB/OL]. http://www.who.int/tb/publications/global_report/en/.
|
[2] |
Bissel DM, Gores GJ, Laskin DL, et al. Drug-induced liver injury: Mechanisms and test systems[J]. Hepatology, 2001, 33(4):1009-1013.
doi: 10.1053/jhep.2001.23505
URL
|
[3] |
Garcia-Cortes M, Robles-Diaz M, Stephens C, et al. Drug induced liver injury: An update[J]. Arch Toxicol, 2020, 94(10):3381-3407.
doi: 10.1007/s00204-020-02885-1
pmid: 32852569
|
[4] |
Ramappa V, Aithal GP. Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management[J]. J Clin Exp Hepatol, 2013, 3(1):37-49.
doi: 10.1016/j.jceh.2012.12.001
URL
|
[5] |
Devarbhavi H, Aithal G, Treeprasertsuk S, et al. Drug-induced liver injury: Asia Pacific Association of Study of Liver consensus guidelines[J]. Hepatol Int, 2021, 15(2):258-282.
doi: 10.1007/s12072-021-10144-3
URL
|
[6] |
Yu YC, Mao YM, Chen CW, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury[J]. Hepatol Int, 2017, 11(3):221-241.
doi: 10.1007/s12072-017-9793-2
URL
|
[7] |
中华医学会肝病学分会药物性肝病学组. 药物性肝损伤诊治指南[J]. 中华肝脏病杂志, 2015, 11(23):810-820.
|
[8] |
薄湘晖. 异甘草酸镁治疗抗结核药引起的药物性肝炎临床疗效[J]. 中国现代药物应用, 2017, 11(18):97-98.
|
[9] |
Shang PH, Xia YY, Liu FY, et al. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI) in China[J]. PLoS One, 2011, 6(7):e21836.
|
[10] |
中华医学会结核病学分会. 抗结核药物性肝损伤诊治指南(2019年版)[J]. 中华结核和呼吸杂志, 2019, 42(5):343-356.
|
[11] |
钟洪兰. 抗结核药物致肝损伤的预防与治疗药物选择[J]. 实用医学杂志, 2020, 36(24):3307-3311.
|
[12] |
Metushi IG, Zhu X, Chen X, et al. Mild isoniazid-induced liver injury in humans is associated with an increase in Th17 cells and T cells producing IL-10[J]. Chem Res Toxicol, 2014, 27(4):683-689.
doi: 10.1021/tx500013z
pmid: 24564876
|
[13] |
Joseph Martin S, Evan Prince S. Comparative modulation of levels of oxidative stress in the liver of anti-tuberculosis drug treated wistar rats by vitamin B12, beta-carotene, and spirulina fusiformis: Role of NF-κB, iNOS, IL-6, and IL-10[J]. J Cell Biochem, 2017, 118(11):3825-3833.
doi: 10.1002/jcb.v118.11
URL
|
[14] |
Sukhanov DS, Okovityǐ SV, Demidik SN, et al. Relationship between the endogenous interferon IFN-gamma level and risk of hepatotoxic liver damage in tuberculosis patients[J]. Eksp Klin Farmakol, 2012, 75(6):40-43.
|
[15] |
Guler R, Olleros ML, Vesin D, et al. Inhibition of inducible nitric oxide synthase protects against liver injury induced by mycobacterial infection and endotoxins[J]. J Hepatol, 2004, 41(5):773-781.
pmid: 15519650
|
[16] |
刘向, 杨丽, 郑甜, 等. 新疆维吾尔族、汉族抗结核药物性肝损伤患者血清IL-10 分泌水平的研究[J]. 中国感染控制杂志, 2019, 18(1):37-41.
|
[17] |
麻斌喜, 陈伟岚, 郑甜, 等. 汉族、维吾尔族抗结核药物性肝损害患者血清TNF-α表达水平的研究[J]. 中国医院药学杂志, 2017, 37(24):2456-2459.
|
[18] |
孟慧杰, 杨雪迎, 覃红娟, 等. 炎症细胞因子对抗结核性药物肝损伤的预测作用[J]. 实用医学杂志, 2019, 35(2):238-241.
|
[19] |
Usui T, Meng X, Saide K, et al. From the cover: characterization of isoniazid-specific T-cell clones in patients with anti-tuberculosis drug-related liver and skin injury[J]. Toxicol Sci, 2017, 155(2):420-431.
doi: 10.1093/toxsci/kfw218
URL
|
[20] |
郭春平, 何平, 刘小斌. 异甘草酸镁对抗结核药物性肝损害的疗效[J]. 深圳中西医结合杂志, 2020, 30(24):191-192.
|
[21] |
阮军, 尹恒, 寇国先, 等. 异甘草酸镁治疗抗结核药物所致肝损伤疗效的 Meta分析[J]. 药学实践杂志, 2019, 37(4):375-379.
|
[22] |
茅益民, 曾民德, 陈勇, 等. 异甘草酸镁治疗ALT升高的慢性肝病的多中心、随机、双盲、多剂量、阳性药物平行对照临床研究[J]. 中华肝脏病杂志, 2009, 17(11) : 847-851.
|
[23] |
Wang W, Li XG, Xu J. Magnesium isoglycyrrhizinate attenuates D-galactosamine/ lipopolysaccharides induced acute liver injury of rat via regulation of the p38-MAPK and NF-κB signaling pathways[J]. Immunopharmacol Immunotoxicol, 2018, 40(3):262-267.
doi: 10.1080/08923973.2018.1441300
URL
|
[24] |
Liu MM, Zheng B, Liu PP, et al. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury[J]. Mol Med Rep, 2021, 23(6):438.
doi: 10.3892/mmr
URL
|
[25] |
詹爱琴, 陈春丽, 朱庆峰, 等. 异甘草酸镁治疗慢性乙型肝炎重度患者外周血Treg Th17 细胞及其相关细胞因子水平变化[J]. 实用肝脏病杂志, 2020, 23(6):793-796.
|
[26] |
赖雪莹, 刘斌, 胡学琴, 等. 异甘草酸镁对紫杉醇致大鼠肝损伤的防治作用及其对血清IL-6、IL-10、TNF-α的影响[J]. 中华临床医师杂志(电子版), 2020, 14(11):922-925.
|
[27] |
Xie CF, Li XT, Zhu JY, et al. Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-κB and MAPK pathways in RAW264.7 cells[J]. Bioorg Med Chem, 2019, 27(3):516-524.
doi: 10.1016/j.bmc.2018.12.033
URL
|
[28] |
Feng TT, Yang XY, Hao SS, et al. TLR-2-mediated metabolic reprogramming participates in polyene phosphatidylcholine-mediated inhibition of M1 macrophage polarization[J]. Immunol Res, 2020, 68(1):28-38.
doi: 10.1007/s12026-020-09125-9
URL
|