临床荟萃 ›› 2021, Vol. 36 ›› Issue (2): 168-173.doi: 10.3969/j.issn.1004-583X.2021.02.015
收稿日期:
2020-11-11
出版日期:
2021-02-20
发布日期:
2021-02-05
通讯作者:
张誉
E-mail:yuzhang2016@jnu.edu.cn
基金资助:
Received:
2020-11-11
Online:
2021-02-20
Published:
2021-02-05
摘要:
Duchenne型肌营养不良症(Duchenne muscular dystrophy, DMD)是一种X连锁致死性遗传性肌病,由Dystrophin基因突变导致抗肌萎缩蛋白缺失所致。DMD尚缺乏有效的治疗方法,但随着对该病发病机制和病理变化过程的认识不断深入,其治疗选择越来越多。这些治疗方法旨在恢复Dystrophin蛋白表达或弥补Dystrophin蛋白缺失。
中图分类号:
罗宏, 岑海媚, 罗彬, 张玉生, 张誉. Duchenne型肌营养不良症的治疗[J]. 临床荟萃, 2021, 36(2): 168-173.
[1] |
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management[J]. Lancet Neurol, 2018,17(3):251-267.
doi: S1474-4422(18)30024-3 pmid: 29395989 |
[2] | Iftikhar M, Frey J, Shohan MJ, et al. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy[J]. Pharmacol Ther, 2020: 107719. |
[3] |
Shieh PB. Emerging Strategies in the Treatment of Duchenne Muscular Dystrophy[J]. Neurotherapeutics, 2018,15(4):840-848.
doi: 10.1007/s13311-018-00687-z URL |
[4] |
Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy[J]. Nat Rev Neurol, 2019,15(7):373-386.
doi: 10.1038/s41582-019-0203-3 pmid: 31147635 |
[5] | Sun C, Shen L, Zhang Z, et al. Therapeutic strategies for Duchenne muscular dystrophy: An update[J]. Genes (Basel), 2020,11(8) 837. |
[6] | Malik V, Rodino-Klapac LR, Viollet L, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy[J]. Ann Neurol, 2010,67(6):771-780. |
[7] |
Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy[J]. PLoS One, 2013,8(12):e81302.
doi: 10.1371/journal.pone.0081302 URL |
[8] |
Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy[J]. Muscle Nerve, 2014,50(4):477-487.
doi: 10.1002/mus.v50.4 URL |
[9] |
McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017,390(10101):1489-1498.
doi: S0140-6736(17)31611-2 pmid: 28728956 |
[10] |
Haas M, Vlcek V, Balabanov P, et al. European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene[J]. Neuromuscul Disord, 2015,25(1):5-13.
doi: 10.1016/j.nmd.2014.11.011 URL |
[11] |
Echigoya Y, Lim KRQ, Nakamura A, et al. Multiple exon skipping in the duchenne muscular dystrophy hot spots: prospects and challenges[J]. J Pers Med, 2018,8(4):41.
doi: 10.3390/jpm8040041 URL |
[12] |
Lim KRQ, Echigoya Y, Nagata T, et al. Efficacy of multi-exon skipping treatment in Duchenne muscular dystrophy dog model neonates[J]. Mol Ther, 2019,27(1):76-86.
doi: 10.1016/j.ymthe.2018.10.011 URL |
[13] |
Goemans N, Mercuri E, Belousova E, et al. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2018,28(1):4-15.
doi: 10.1016/j.nmd.2017.10.004 URL |
[14] |
Lim KR, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy[J]. Drug Des Devel Ther, 2017,11:533-545.
doi: 10.2147/DDDT URL |
[15] |
Heo YA. Golodirsen: First approval[J]. Drugs, 2020,80(3):329-333.
doi: 10.1007/s40265-020-01267-2 URL |
[16] |
Babbs A, Chatzopoulou M, Edwards B, et al. From diagnosis to therapy in Duchenne muscular dystrophy[J]. Biochem Soc Trans, 2020,48(3):813-821.
doi: 10.1042/BST20190282 URL |
[17] | 张成, 李欢. Duchenne型肌营养不良症治疗研究进展及应用前景[J]. 中国现代神经疾病杂志, 2018,18(7):480-493. |
[18] |
Juliano RL. The delivery of therapeutic oligonucleotides[J]. Nucleic Acids Res, 2016,44(14):6518-6548.
doi: 10.1093/nar/gkw236 URL |
[19] |
Moulton HM, Moulton JD. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy[J]. Biochim Biophys Acta, 2010,1798(12):2296-2303.
doi: 10.1016/j.bbamem.2010.02.012 pmid: 20170628 |
[20] | 张淑, 吴士文. 杜氏型肌营养不良症治疗进展[J]. 实用药物与临床, 2019,22(9):897-903. |
[21] | 张成, 林金福, 廖子钰. Duchenne型肌营养不良症基因治疗进展与思考[J]. 中国现代神经疾病杂志, 2019,19(5):312-319. |
[22] |
Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy[J]. Nat Commun, 2017,8:16105.
doi: 10.1038/ncomms16105 URL |
[23] |
Okada T, Takeda S. Current challenges and future directions in recombinant AAV-mediated gene therapy of Duchenne muscular dystrophy[J]. Pharmaceuticals (Basel), 2013,6(7):813-836.
doi: 10.3390/ph6070813 URL |
[24] |
Ousterout DG, Kabadi AM, Thakore PI, et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy[J]. Nat Commun, 2015,6:6244.
doi: 10.1038/ncomms7244 pmid: 25692716 |
[25] |
Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells[J]. Cell Stem Cell, 2016,18(4):533-540.
doi: 10.1016/j.stem.2016.01.021 URL |
[26] |
Béroud C, Tuffery-Giraud S, Matsuo M, et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy[J]. Hum Mutat, 2007,28(2):196-202.
doi: 10.1002/humu.v28:2 URL |
[27] | 李统宇, 梁平. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016,45(6):648-654. |
[28] |
Matthias N, Hunt SD, Wu J, et al. Skeletal muscle perfusion and stem cell delivery in muscle disorders using intra-femoral artery canulation in mice[J]. Exp Cell Res, 2015,339(1):103-111.
doi: 10.1016/j.yexcr.2015.08.018 URL |
[29] |
Siemionow M, Cwykiel J, Heydemann A, et al. Dystrophin expressing chimeric (DEC) human cells provide a potential therapy for Duchenne muscular dystrophy[J]. Stem Cell Rev Rep, 2018,14(3):370-384.
doi: 10.1007/s12015-018-9807-z pmid: 29546607 |
[30] | Matthews E, Brassington R, Kuntzer T, et al. Corticosteroids for the treatment of Duchenne muscular dystrophy[J]. Cochrane Database Syst Rev, 2016, (5):CD003725. |
[31] |
Conklin LS, Damsker JM, Hoffman EP, et al. Phase Ⅱa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug[J]. Pharmacol Res, 2018,136:140-150.
doi: 10.1016/j.phrs.2018.09.007 URL |
[32] |
Hoffman EP, Schwartz BD, Mengle-Gaw LJ, et al. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function[J]. Neurology, 2019,93(13):e1312-1312e1323.
doi: 10.1212/WNL.0000000000008168 pmid: WOS:000512605300009 |
[33] |
Heier CR, Yu Q, Fiorillo AA, et al. Vamorolone targets dual nuclear receptors to treat inflammation and dystrophic cardiomyopathy[J]. Life Sci Alliance, 2019,2(1):e201800186.
doi: 10.26508/lsa.201800186 URL |
[34] |
Kleopa KA, Drousiotou A, Mavrikiou E, et al. Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy[J]. Hum Mol Genet, 2006,15(10):1623-1628.
doi: 10.1093/hmg/ddl083 URL |
[35] |
Chatzopoulou M, Claridge TDW, Davies KE, et al. Isolation, structural Identification, synjournal, and pharmacological profiling of 1, 2-trans-dihydro-1, 2-diol metabolites of the utrophin modulator ezutromid[J]. J Med Chem, 2020,63(5):2547-2556.
doi: 10.1021/acs.jmedchem.9b01547 URL |
[36] |
Bettica P, Petrini S, D'Oria V, et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2016,26(10):643-649.
doi: 10.1016/j.nmd.2016.07.002 URL |
[37] |
Whitehead NP, Kim MJ, Bible KL, et al. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy[J]. Proc Natl Acad Sci U S A, 2015,112(41):12864-12869.
doi: 10.1073/pnas.1509536112 URL |
[38] |
Whitehead NP. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy[J]. Autophagy, 2016,12(4):705-706.
doi: 10.1080/15548627.2016.1144005 pmid: 26890413 |
[39] |
Iwere RB, Hewitt J. Myopathy in older people receiving statin therapy: a systematic review and meta-analysis[J]. Br J Clin Pharmacol, 2015,80(3):363-371.
doi: 10.1111/bcp.12687 pmid: 26032930 |
[40] |
Parker BA, Thompson PD. Effect of statins on skeletal muscle: exercise, myopathy, and muscle outcomes[J]. Exerc Sport Sci Rev, 2012,40(4):188-194.
pmid: 23000957 |
[41] |
Bhardwaj S, Selvarajah S, Schneider EB. Muscular effects of statins in the elderly female: a review[J]. Clin Interv Aging, 2013,8:47-59.
doi: 10.2147/CIA.S29686 pmid: 23355775 |
[1] | 张慧卿,路延朋,宋学琴. CAPN3基因突变导致的Calpainopathy的发病机制、临床表现和实验室检测研究进展[J]. 临床荟萃, 2020, 35(6): 564-567. |
[2] | 刘磊1, 陈燕1, 曹秉振2, 吕涌涛1, 胡怀强2, 赵修敏1, 冯肖亚1, 克丙申2, 郇英1. 强直性肌营养不良的临床特征、肌电图及肌肉病理研究[J]. 临床荟萃, 2020, 35(4): 330-334. |
[3] | 董惠,宋学琴. Duchenne肌营养不良的临床表现及诊断治疗进展[J]. 临床荟萃, 2019, 34(3): 212-218. |
[4] | 王玮. 从遗传的角度谈罕见病的诊治进展[J]. 临床荟萃, 2019, 34(3): 201-206. |
[5] | 金鹏;张敏莉;周琪. 进行性肌营养不良合并早发扩张型心肌病1例[J]. 临床荟萃, 2014, 29(2): 177-177. |
[6] | 陈银红;王晓静;沈宏锐;胡静. 杜氏肌营养不良和遗传咨询[J]. 临床荟萃, 2013, 28(5): 590-592. |
[7] | 王超;王林. hVEGF165腺相关病毒对心肌梗死大鼠心功能的影响[J]. 临床荟萃, 2011, 26(23): 2061-2064. |
[8] | 张玮;熊符;苏全喜. 面肩肱型肌营养不良症的分子遗传学研究进展[J]. 临床荟萃, 2010, 25(4): 353-355. |
[9] | 曹晨辉;赵建永;张卫华. 进行性肌营养不良合并第四脑室闭塞综合征1例[J]. 临床荟萃, 2010, 25(16): 1387-1387. |
[10] | 张轶斌;杨晓凤;王红梅;许忆峰;崔激平;吴雁翔;吕乃武;单鸿. 自体骨髓和脐血间充质干细胞联合移植治疗杜氏型肌营养不良症疗效分析[J]. 临床荟萃, 2010, 25(13): 1130-1133. |
[11] | 张莹;陈晓青;冯丽娟;骆金芝. 杜兴型肌营养不良合并低血磷抗维生素D佝偻病1例[J]. 临床荟萃, 2009, 24(22): 1957-1957. |
[12] | 刘向红;李广生;曾祥俊. 强直性肌营养不良中枢神经系统损害1例[J]. 临床荟萃, 2009, 24(10): 908-0. |
[13] | 宋红娥;王晓明;贾莉;王薇. 以肝功能受损就诊的进行性肌营养不良1例[J]. 临床荟萃, 2008, 23(20): 1462-1462. |
[14] | 梁保丽;南月敏;付娜;胡静. 以转氨酶升高就诊的进行性肌营养不良12例分析[J]. 临床荟萃, 2007, 22(23): 1736-1737. |
[15] | 娄红梅;刘秀玲;王春艳. 慢性丙型肝炎治疗现状与前景[J]. 临床荟萃, 2006, 21(24): 1805-1806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||