临床荟萃 ›› 2021, Vol. 36 ›› Issue (2): 174-178.doi: 10.3969/j.issn.1004-583X.2021.02.016
马光宇1, 宋崇东1, 韩语纯1, 张荣福1, 张哲2, 程爽3, 苏亚楠4()
收稿日期:
2020-09-21
出版日期:
2021-02-20
发布日期:
2021-02-05
通讯作者:
苏亚楠
E-mail:jmsdsyn@163.com
Received:
2020-09-21
Online:
2021-02-20
Published:
2021-02-05
摘要:
近年来发现肠道菌群与阿尔茨海默症(Alzheimer’s disease, AD)有着密切联系。肠道菌群通过微生物-肠-脑轴调节神经元的发育,而肠道菌群紊乱则导致神经系统疾病,如AD。肠道菌群失调引起的中枢神经功能紊乱、慢性炎症、β-样淀粉蛋白(amyloid β-protein, Aβ)沉积、递质失衡和氧化应激等都会加重AD进展。益生元、益生菌、中医药、粪菌移植、抗生素和特定饮食方式可能是AD防治和治疗的潜在靶点,幽门螺杆菌感染、慢性噪声和铝是AD的潜在危险。
中图分类号:
马光宇, 宋崇东, 韩语纯, 张荣福, 张哲, 程爽, 苏亚楠. 肠道菌群与阿尔茨海默病的研究进展[J]. 临床荟萃, 2021, 36(2): 174-178.
[1] |
Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease[J]. Nat Rev Neurosci, 2018,19(11):687-700.
doi: 10.1038/s41583-018-0067-3 URL |
[2] |
Jiang C, Li G, Huang P, et al. The gut microbiota and Alzheimer’s disease[J]. J Alzheimers Dis, 2017,58(1):1-15.
doi: 10.3233/JAD-161141 URL |
[3] |
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiol Aging, 2017,49:60-68.
doi: 10.1016/j.neurobiolaging.2016.08.019 URL |
[4] |
Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2018,63(4):1337-1346.
doi: 10.3233/JAD-180176 URL |
[5] |
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health[J]. J AOAC Int, 2012,95(1):50-60.
pmid: 22468341 |
[6] |
Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain[J]. Curr Pharm Des, 2014,20(10):1487-1498.
doi: 10.2174/13816128113199990462 URL |
[7] |
Govindarajan N, Agis-Balboa RC, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression[J]. J Alzheimers Dis, 2011,26(1):187-197.
doi: 10.3233/JAD-2011-110080 URL |
[8] |
Bourassa MW, Alim I, Bultman SJ, et al. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health[J]. Neurosci Lett, 2016,625:56-63.
doi: 10.1016/j.neulet.2016.02.009 URL |
[9] |
Erny D, de Angelis ALH, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015,18(7):965-977.
doi: 10.1038/nn.4030 pmid: 90116967293390874 |
[10] |
Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis[J]. J Neuroinflammation, 2014,11:48.
doi: 10.1186/1742-2094-11-48 URL |
[11] |
Zhao Y, Jaber V, Lukiw WJ. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus[J]. Front Cell Infect Microbiol, 2017,7:318.
doi: 10.3389/fcimb.2017.00318 URL |
[12] |
Barton SM, Janve VA, McClure R, et al. Lipopolysaccharide induced opening of the blood brain barrier on aging 5XFAD mouse model[J]. J Alzheimers Dis. 2019,67(2), 503-513.
doi: 10.3233/JAD-180755 pmid: WOS:000457779300007 |
[13] |
Aziz Q, Doré J, Emmanuel A, et al. Gut microbiota and gastrointestinal health: current concepts and future directions[J]. Neurogastroenterol Motil, 2013,25(1):4-15.
doi: 10.1111/nmo.2012.25.issue-1 URL |
[14] |
Wang MM, Miao D, Cao XP, et al. Innate immune activation in Alzheimer’s disease[J]. Ann Transl Med, 2018,6(10):177.
doi: 10.21037/atm URL |
[15] |
Alexandrov P, Zhai Y, Li W, et al. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain[J]. Folia Neuropathol, 2019,57(3):211-219.
doi: 37898 pmid: 31588707 |
[16] |
Iadanza MG, Jackson MP, Hewitt EW, et al. A new era for understanding amyloid structures and disease[J]. Nat Rev Mol Cell Biol, 2018,19(12):755-773.
doi: 10.1038/s41580-018-0060-8 URL |
[17] |
Marques F, Sousa JC, Sousa N, et al. Blood-brain-barriers in aging and in Alzheimer's disease[J]. Mol Neurodegener. 2013,8:38.
doi: 10.1186/1750-1326-8-38 URL |
[18] | Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer’s disease (AD)[J]. Front Aging Neurosci, 2015,7:9. |
[19] |
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer’s disease[J]. Cell Mol Neurobiol, 2015,35(1):71-83.
doi: 10.1007/s10571-014-0101-6 URL |
[20] |
Lukiw WJ, Li W, Bond T, et al. Facilitation of gastrointestinal (GI) tract microbiome-derived lipopolysaccharide (LPS) entry into human neurons by amyloid beta-42 (Aβ42) peptide[J]. Front Cell Neurosci, 2019,13:545.
doi: 10.3389/fncel.2019.00545 URL |
[21] |
Solas M, Puerta E, Ramirez MJ. Treatment options in Alzheimer's disease:the GABA story[J]. Curr Pharm Des, 2015,21(34):4960-4971.
doi: 10.2174/1381612821666150914121149 URL |
[22] |
Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders[J]. Neurochem Res, 2016,41(11):2819-2835.
doi: 10.1007/s11064-016-2039-1 URL |
[23] |
Pistollato F, Iglesias RC, Ruiz R, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies[J]. Pharmacol Res, 2018,131:32-43.
doi: 10.1016/j.phrs.2018.03.012 URL |
[24] | Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease:a randomized, double-blind and controlled trial[J]. Front Aging Neurosci, 2016,8:256. |
[25] |
Nik Azm SA, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats[J]. Appl Physiol Nutr Metab, 2018,43(7):718-726.
doi: 10.1139/apnm-2017-0648 URL |
[26] | Chen D, Zhang P, Lin Li, et al. Protective effect of oligosaccharides from Morinda officinalis on beta-amyloid-induced dementia rats[J]. Zhongguo Zhong Yao Za Zhi, 2013,38(9):1306-1309. |
[27] |
Chen D, Yang X, Yang J, et al. Prebiotic effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis[J]. Front Aging Neurosci, 2017,9:403.
doi: 10.3389/fnagi.2017.00403 URL |
[28] | 杨玉芳. 当归芍药散对APP/PSN阿尔茨海默病模型小鼠肠道菌群的影响及分子机制[D]. 皖南医学院, 2016. |
[29] | 杨璐, 李庆华, 许玲, 等. 粪菌移植对阿尔茨海默病小鼠学习记忆能力的影响[J]. 郑州大学学报(医学版), 2017,52(6):702-706. |
[30] |
Kim M, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model[J]. Gut, 2020,69(2):283-294.
doi: 10.1136/gutjnl-2018-317431 URL |
[31] |
Ho L, Ono K, Tsuji M, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother, 2018,18(1):83-90.
doi: 10.1080/14737175.2018.1400909 URL |
[32] |
Gu Y, Scarmeas N. Dietary patterns in Alzheimer's disease and cognitive aging[J]. Curr Alzheimer Res. 2011,8(5):510-519.
pmid: 21605048 |
[33] |
Nagpal R, Neth BJ, Wang S, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment[J]. EBioMedicine, 2019,47:529-542.
doi: 10.1016/j.ebiom.2019.08.032 URL |
[34] |
Yulug B, Hanoglu L, Ozansoy M, et al. Therapeutic role of rifampicin in Alzheimer’s disease[J]. Psychiatry Clin Neurosci, 2018,72(3):152-159.
doi: 10.1111/pcn.2018.72.issue-3 URL |
[35] |
Budni J, Garcez ML, de Medeiros J, et al. The anti-inflammatory role of minocycline in Alzheimer’s Disease[J]. Curr Alzheimer Res, 2016,13(12):1319-1329.
pmid: 27539598 |
[36] |
Wang C, Yu J-T, Miao D, et al. Targeting the mTOR signaling network for Alzheimer’s disease therapy[J]. Mol Neurobiol, 2014,49(1):120-135.
doi: 10.1007/s12035-013-8505-8 URL |
[37] |
Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour[J]. Brain Behav Immun, 2015,48:165-173.
doi: 10.1016/j.bbi.2015.04.004 URL |
[38] |
Contaldi F, Capuano F, Fulgione A, et al. Author correction: The hypojournal that helicobacter pylori predisposes to Alzheimer's disease is biologically plausible[J]. Sci Rep, 2018,8(1):6061.
doi: 10.1038/s41598-018-23613-x URL |
[39] |
Kountouras J, Gavalas E, Zavos C, et al. Alzheimer's disease and helicobacter pylori infection: defective immune regulation and apoptosis as proposed common links[J]. Med Hypotheses, 2007,68(2):378-388.
pmid: 16979298 |
[40] |
Wang XL, Zeng J, Yang Y, et al. Helicobacter pylori filtrate induces Alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3β[J]. J Alzheimers Dis, 2015,43(1):153-165.
doi: 10.3233/JAD-140198 URL |
[41] |
Cui B, Li K, Gai Z, et al. Chronic noise exposure acts cumulatively to exacerbate Alzheimer’s disease-like amyloid-β pathology and neuroinflammation in the rat hippocampus[J]. Sci Rep, 2015,5:12943.
doi: 10.1038/srep12943 URL |
[42] |
Cui B, Su D, Li W, et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer’s disease[J]. J Neuroinflammation, 2018,15(1):190.
doi: 10.1186/s12974-018-1223-4 URL |
[43] |
Bharathi, Vasudevaraju P, Govindaraju M, et al. Molecular toxicity of aluminium in relation to neurodegeneration[J]. Indian J Med Res, 2008,128(4):545-556.
pmid: 19106446 |
[44] |
Alexandrov PN, Hill JM, Zhao Y, et al. Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (GI)-tract microbiome-resident Bacteroides fragilis[J]. J Inorg Biochem, 2020,203:110886.
doi: 10.1016/j.jinorgbio.2019.110886 URL |
[1] | 肖煌怡, 袁建坤, 严梓予, 曾雯姝, 鲁兰莫, 王峻. 认知干预对遗忘型轻度认知障碍老年患者干预效果的meta分析[J]. 临床荟萃, 2024, 39(1): 12-19. |
[2] | 金家辉, 杨阳, 秦铜, 何雨欣, 苏美华. 补充益生菌对2型糖尿病患者糖代谢改善的meta分析[J]. 临床荟萃, 2023, 38(7): 581-587. |
[3] | 杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
[4] | 宗廷妮, 戴光荣, 赵晓宇, 李瑞风, 柴聪敏. 代谢相关脂肪性肝病靶向药物治疗进展[J]. 临床荟萃, 2023, 38(4): 373-376. |
[5] | 江黎晨, 章秋, 胡红琳. Apelin在多囊卵巢综合征中的研究进展[J]. 临床荟萃, 2023, 38(3): 285-288. |
[6] | 谢少为, 吕小涵, 董艳红, 吕佩源. 抗炎细胞因子在阿尔茨海默病中的研究进展[J]. 临床荟萃, 2023, 38(2): 185-188. |
[7] | 任玉梅, 章秋, 胡红琳. 多囊卵巢综合征患者血清S100A4水平变化及其对多囊卵巢综合征的影响[J]. 临床荟萃, 2023, 38(12): 1078-1085. |
[8] | 刘亚鑫, 郭岚, 王泽凯, 牛凯. 慢性肾脏病合并骨质疏松症治疗的研究进展[J]. 临床荟萃, 2023, 38(12): 1146-1149. |
[9] | 李瑞珍, 李星辉, 曾璟, 姚晓涛, 杨珂欣, 张展. 高血压认知功能障碍机制的研究进展[J]. 临床荟萃, 2023, 38(1): 88-92. |
[10] | 张莉敏, 孙军. FIB-4在代谢相关脂肪性肝病合并结直肠腺瘤性息肉患者的预测价值[J]. 临床荟萃, 2022, 37(4): 334-338. |
[11] | 张雪晴, 陈树春. 血尿酸与高密度脂蛋白胆固醇比值在糖脂代谢相关疾病中的研究进展[J]. 临床荟萃, 2022, 37(11): 1044-1047. |
[12] | 宋学梅, 曹猛, 项丽君, 王园, 张晓梅. 危重患者的血糖管理[J]. 临床荟萃, 2022, 37(1): 66-71. |
[13] | 赵薇, 罗兰, 李珅, 董莹莹, 李欣宇, 高政南. TG/HDL-C、 TyG、 non-HDL-C预测中老年女性代谢综合征价值[J]. 临床荟萃, 2021, 36(9): 790-794. |
[14] | 贾亚杰, 姚明. 限制性与开放性液体复苏对脓毒性休克患者呼吸力学及氧代谢的影响[J]. 临床荟萃, 2021, 36(9): 803-806. |
[15] | 李靖, 王保兴. 慢性肾脏病患者血管钙化的研究进展[J]. 临床荟萃, 2021, 36(9): 850-855. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||