临床荟萃 ›› 2021, Vol. 36 ›› Issue (2): 179-183.doi: 10.3969/j.issn.1004-583X.2021.02.017
收稿日期:
2020-08-15
出版日期:
2021-02-20
发布日期:
2021-02-05
通讯作者:
李元军
E-mail:791120783@qq.com
Received:
2020-08-15
Online:
2021-02-20
Published:
2021-02-05
摘要:
二甲双胍作为2型糖尿病的传统用药,除可控制血糖外,还具有多种潜在临床价值,包括逆转认知障碍、抑制肿瘤生长、改善肠道菌群、保护心血管、抗炎等。此外,二甲双胍还被称为结核病宿主定向治疗的候选药物。研究证实,二甲双胍辅助抗结核作用机制包括:自噬诱导、调节氧化应激、协同增强抗结核药物疗效、减轻炎症反应等。基于以上机制,二甲双胍具有降低结核病发病率、提高治疗效果、改善临床结局等优势。本文结合既往文献报道,就二甲双胍在抗结核中的临床应用现状及相关机制作一综述,旨在为临床结核病新型药物的研发、结核病的防治提供参考依据。
中图分类号:
李百远, 李元军, 高非凡. 二甲双胍辅助抗结核的作用机制及临床价值[J]. 临床荟萃, 2021, 36(2): 179-183.
[1] | World Health Organization. Global tuberculosis report 2019[R]. Geneva:WHO, 2019: 18-20. |
[2] |
Tiberi S, Buchanan R, Caminero JA, et al. The challenge of the new tuberculosis drugs[J]. Presse Med, 2017,46(2 Pt 2):e41-e51.
doi: 10.1016/j.lpm.2017.01.016 URL |
[3] |
Yew WW, Chan DP, Chang KC, et al. How does metformin act as a host-directed agent in tuberculosis associated with diabetes mellitus?[J]. J Thorac Dis, 2020,12(3):1124-1126.
doi: 10.21037/jtd URL |
[4] | Restrepo BI. Diabetes and Tuberculosis[J]. Microbiol Spectr, 2016,4(6):17-23. |
[5] |
Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic reviewof 13 observational studies[J]. PLoS Med, 2008,5(7):e152.
doi: 10.1371/journal.pmed.0050152 URL |
[6] |
Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants[J]. Lancet, 2011,378(9785):31-40.
doi: 10.1016/S0140-6736(11)60679-X URL |
[7] |
Alba-Loureiro TC, Munhoz CD, Martins JO, et al. Neutrophil function and metabolism in individuals with diabetes mellitus[J]. Braz J Med Biol Res, 2007,40(8):1037-1044.
pmid: 17665039 |
[8] |
Kumar Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis[J]. Immunology, 2017,152(1):13-24.
doi: 10.1111/imm.12762 pmid: 28543817 |
[9] |
Lin CH, Kuo SC, Hsieh MC, et al. Effect of diabetes mellitus on risk of latent TB infection in a high TB incidence area: a community-based study in Taiwan[J]. BMJ Open, 2019,9(10):e029948.
doi: 10.1136/bmjopen-2019-029948 URL |
[10] |
Ogbera AO, Kapur A, Abdur-Razzaq H, et al. Clinical profile of diabetes mellitus in tuberculosis[J]. BMJ Open Diabetes Res Care, 2015,3(1):e000112.
doi: 10.1136/bmjdrc-2015-000112 URL |
[11] |
Baker MA, Harries AD, Jeon CY, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review[J]. BMC Med, 2011,9:81.
doi: 10.1186/1741-7015-9-81 URL |
[12] | Ottmani SE, Murray MB, Jeon CY, et al. Consultation meeting on tuberculosis and diabetes mellitus: meeting summary and recommendations[J]. Int J Tuberc Lung Dis, 2010,14(12):1513-1517. |
[13] |
Novita BD. Metformin: A review of its potential as enhancer for anti tuberculosis efficacy in diabetes mellitus-tuberculosis coinfection patients[J]. Indian J Tuberc, 2019,66(2):294-298.
doi: 10.1016/j.ijtb.2019.02.013 URL |
[14] |
Rodriguez-Carlos A, Valdez-Miramontes C, Marin-Luevano P, et al. Metformin promotes mycobacterium tuberculosis killing and increases the production of human β-defensins in lung epithelial cells and macrophages[J]. Microbes Infect, 2020,22(3):111-118.
doi: 10.1016/j.micinf.2019.10.002 URL |
[15] | Singhal A, Jie L, Kumar P, et al. Metformin as adjunct antituberculosis therapy[J]. Sci Transl Med, 2014, 6(263):263ra159. |
[16] |
Bachmakov I, Glaeser H, Fromm MF, et al. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1[J]. Diabetes, 2008,57(6):1463-1469.
doi: 10.2337/db07-1515 pmid: 18314419 |
[17] |
Magee MJ, Salindri AD, Kornfeld H, et al. Reduced prevalence of latent tuberculosis infection in diabetes patients using metformin and statins[J]. Eur Respir J, 2019,53(3):1801695.
doi: 10.1183/13993003.01695-2018 URL |
[18] |
Lee MC, Chiang CY, Lee CH, et al. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria[J]. PLoS One, 2018,13(10):e0205807.
doi: 10.1371/journal.pone.0205807 URL |
[19] |
Zhang M, He JQ. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: a systematic review and meta-analysis[J]. Eur J Clin Pharmacol, 2020,76(2):149-159.
doi: 10.1007/s00228-019-02786-y pmid: WOS:000499562800001 |
[20] |
Zhang C, Yang L, Zhao N, et al. Insights into macrophage autophagy in latent tuberculosis infection: role of heat shock protein 16.3[J]. DNA Cell Biol, 2018,37(5):442-448.
doi: 10.1089/dna.2017.4066 URL |
[21] | Ernst JD. The immunological life cycle of tuberculosis[J]. Nat Rev Immunol, 2012,12(8):581-591. |
[22] |
Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells[J]. Mol Cancer Res, 2011,9(5):603-615.
doi: 10.1158/1541-7786.MCR-10-0343 URL |
[23] |
Novita BD, Ali M, Pranoto A, et al. Metformin induced autophagy in diabetes mellitus - tuberculosis co-infection patients: A case study[J]. Indian J Tuberc, 2019,66(1):64-69.
doi: 10.1016/j.ijtb.2018.04.003 URL |
[24] |
Matsuzawa-Ishimoto Y, Hwang S, Cadwell K. Autophagy and inflammation[J]. Annu Rev Immunol, 2018,36:73-101.
doi: 10.1146/annurev-immunol-042617-053253 URL |
[25] |
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases[J]. Clin Interv Aging, 2018,13:757-772.
doi: 10.2147/CIA.S158513 pmid: 29731617 |
[26] |
Choudhury G, MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions[J]. COPD, 2017,14(1):122-135.
doi: 10.1080/15412555.2016.1214948 pmid: 27624918 |
[27] |
Shastri MD, Shukla SD, Chong WC, et al. Role of oxidative stress in the pathology and management of human tuberculosis[J]. Oxid Med Cell Longev, 2018,2018:7695364.
doi: 10.1155/2018/7695364 pmid: 30405878 |
[28] | Yilmaz B, Sucak A, Kilic S, et al. Metformin regresses endometriotic implants in rats by improving implant levels of superoxide dismutase, vascular endothelial growth factor, tissue inhibitor of metalloproteinase-2, matrix metalloproteinase-9[J]. Am J Obstet Gynecol, 2010, 202(4):368.e1-368.e3688.. |
[29] |
Unissa AN, Subbian S, Hanna LE, et al. Overview on mechanisms of isoniazid action and resistance in mycobacterium tuberculosis[J]. Infect Genet Evol, 2016,45:474-492.
doi: 10.1016/j.meegid.2016.09.004 URL |
[30] |
Cakir E, Torun E, Gedik AH, et al. Cathelicidin and human β-defensin 2 in bronchoalveolar lavage fluid of children with pulmonary tuberculosis[J]. Int J Tuberc Lung Dis, 2014,18(6):671-675.
doi: 10.5588/ijtld.13.0831 URL |
[31] |
Arai M, Uchiba M, Komura H, et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro[J]. J Pharmacol Exp Ther, 2010,334(1):206-213.
doi: 10.1124/jpet.109.164970 URL |
[32] |
Lachmandas E, Eckold C, Böhme J, et al. Metformin alters human host responses to mycobacterium tuberculosis in healthy subjects[J]. J Infect Dis, 2019,220(1):139-150.
doi: 10.1093/infdis/jiz064 pmid: 30753544 |
[33] |
Kumar A, Alam A, Grover S, et al. Peptidyl-prolyl isomerase-B is involved in mycobacterium tuberculosis biofilm formation and a generic target for drug repurposing-based intervention[J]. NPJ Biofilms Microbiomes, 2019,5:3.
doi: 10.1038/s41522-018-0075-0 URL |
[34] |
Brindha S, Sundaramurthi JC, Velmurugan D, et al. Docking-based virtual screening of known drugs against murE of Mycobacterium tuberculosis towards repurposing for TB[J]. Bioinformation, 2016,12(8):359-367.
doi: 10.6026/bioinformation URL |
[35] |
Caner S, Nguyen N, Aguda A, et al. The structure of the mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode[J]. Glycobiology, 2013,23(9):1075-1083.
doi: 10.1093/glycob/cwt044 pmid: 23735230 |
[36] |
Guirado E, Rajaram MV, Chawla A, et al. Deletion of PPARγ in lung macrophages provides an immunoprotective response against M. tuberculosis infection in mice[J]. Tuberculosis (Edinb), 2018,111:170-177.
doi: S1472-9792(18)30191-4 pmid: 30029904 |
[37] |
Arnett E, Weaver AM, Woodyard KC, et al. PPARγ is critical for mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis[J]. PLoS Pathog, 2018,14(6):e1007100.
doi: 10.1371/journal.ppat.1007100 URL |
[38] |
Lin SY, Tu HP, Lu PL, et al. Metformin is associated with a lower risk of active tuberculosis in patients with type 2 diabetes[J]. Respirology, 2018,23(11):1063-1073.
doi: 10.1111/resp.13338 URL |
[39] |
Tseng CH. Metformin decreases risk of tuberculosis infection in type 2 diabetes patients[J]. J Clin Med, 2018,7(9):264.
doi: 10.3390/jcm7090264 URL |
[40] |
Marupuru S, Senapati P, Pathadka S, et al. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility[J]. Braz J Infect Dis, 2017,21(3):312-316.
doi: 10.1016/j.bjid.2017.01.001 URL |
[41] | Lin KH, Luo CW, Chen SP, et al. α-Glucosidase inhibitor can effectively inhibit the risk of tuberculosis in patients with diabetes: a nested case-control study[J]. Biomed Res Int, 2020,2020:8085106. |
[42] |
Degner NR, Wang JY, Golub JE, et al. Metformin use reverses the increased mortality associated With diabetes mellitus during tuberculosis treatment[J]. Clin Infect Dis, 2018,66(2):198-205.
doi: 10.1093/cid/cix819 URL |
[43] |
Ma Y, Pang Y, Shu W, et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up[J]. Eur J Clin Microbiol Infect Dis, 2018,37(7):1259-1263.
doi: 10.1007/s10096-018-3242-6 URL |
[44] |
Lee YJ, Han SK, Park JH, et al. The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus[J]. Korean J Intern Med, 2018,33(5):933-940.
doi: 10.3904/kjim.2017.249 URL |
[45] | 王淑霞, 杜亚东, 马艳, 等. 二甲双胍对复治肺结核并发糖尿病患者的疗效初探[J]. 中国防痨杂志, 2017,39(5):476-481. |
[46] |
Sullivan T, Ben Amor Y. The co-management of tuberculosis and diabetes: challenges and opportunities in the developing world[J]. PLoS Med, 2012,9(7):e1001269.
doi: 10.1371/journal.pmed.1001269 URL |
[1] | 刘蕾, 李明武, 万荣. 肺结核合并肺栓塞患者实验室指标的诊断价值[J]. 临床荟萃, 2024, 39(2): 134-139. |
[2] | 刘婉琦, 樊树芹, 庄瑞雪, 贺峰, 刘振川, 解忠祥. 成人水痘-带状疱疹病毒相关颅内感染5例临床分析[J]. 临床荟萃, 2024, 39(2): 149-154. |
[3] | 金鑫, 吴金玲, 尹丽丽. 持续性植物状态促醒机制及治疗研究进展[J]. 临床荟萃, 2024, 39(2): 172-176. |
[4] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[5] | 张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850. |
[6] | 左腾, 王俊祥. 血清阴性类风湿关节炎发病机制的研究进展[J]. 临床荟萃, 2023, 38(8): 753-756. |
[7] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[8] | 裴红运, 文洁, 山凤莲. 结核病患者淋巴细胞程序性细胞死亡受体-1表达变化的研究进展[J]. 临床荟萃, 2023, 38(7): 659-662. |
[9] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[10] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[11] | 高玉叶, 徐海, 孙妍. 肥胖对呼吸功能的影响及机制[J]. 临床荟萃, 2023, 38(4): 381-384. |
[12] | 王凤华, 魏茂提. 干式桑拿疗法治疗慢性心力衰竭的研究进展[J]. 临床荟萃, 2023, 38(4): 369-372. |
[13] | 宗廷妮, 戴光荣, 赵晓宇, 李瑞风, 柴聪敏. 代谢相关脂肪性肝病靶向药物治疗进展[J]. 临床荟萃, 2023, 38(4): 373-376. |
[14] | 邹琳, 崔轶霞, 张娜娜, 陈思荣. 类风湿关节炎合并骨质疏松症发病机制和相关治疗药物对骨质疏松症影响的研究进展[J]. 临床荟萃, 2023, 38(3): 279-284. |
[15] | 彭艳, 白碧玥, 朱晓峰, 尹昌浩. 酒精使用障碍患者认知功能损害发病机制的研究进展[J]. 临床荟萃, 2023, 38(12): 1131-1134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||