临床荟萃 ›› 2023, Vol. 38 ›› Issue (12): 1131-1134.doi: 10.3969/j.issn.1004-583X.2023.12.013
收稿日期:
2022-12-02
出版日期:
2023-12-20
发布日期:
2024-01-30
通讯作者:
尹昌浩
E-mail:yinchanghao79623@163.com
基金资助:
Received:
2022-12-02
Online:
2023-12-20
Published:
2024-01-30
摘要:
酒精是一种中枢神经系统抑制剂,长期大量饮酒对情绪、行为、注意力、记忆、言语和协调均有广泛的不良影响,先前的研究证实其与多种疾病的发生相关。酒精使用障碍(alcohol use disorder,AUD)是一种复发性脑病,是主要的全球健康问题之一,对个人和社会产生了全球性影响。既往有研究发现部分酒精使用障碍患者存在认知功能损害,主要表现为记忆、执行功能、视觉空间能力、语言等多方面的功能受损,其发病机制较为复杂,涉及多个方面,但目前国内外研究尚未完全阐明酒精导致认知损害的相关发病机制。本文旨在对神经营养因子水平降低、血脑屏障破坏、维生素缺乏等与AUD所致认知功能损害相关的发病机制作以下综述,期望为AUD患者认知损害的病因学研究、治疗及预防提供更多科学依据。
中图分类号:
彭艳, 白碧玥, 朱晓峰, 尹昌浩. 酒精使用障碍患者认知功能损害发病机制的研究进展[J]. 临床荟萃, 2023, 38(12): 1131-1134.
[1] |
Rehm J, Shield KD. Global Burden of Alcohol Use Disorders and Alcohol Liver Disease[J]. Biomedicines, 2019, 7(4):99.
doi: 10.3390/biomedicines7040099 URL |
[2] | World Health Organization. Global status report on alcohol and health2018[EB/OL]. 2018. https://www.who.int/publications/i/item/9789241565639. |
[3] | Li YR, Wang J, Zhao LY, et al. The drinking status and associated factors in adults in China[J]. Zhonghua Liu Xing Bing Xue Za Zhi, 2018, 39(7): 898-903. |
[4] |
Mistarz N, Andersen K, Nielsen AS, et al. Pharmacological enhancing agents targeting cognition in patients with alcohol-induced neurocognitive disorders: A systematic review[J]. Neurosci Biobehav Rev, 2021, 125:608-626.
doi: 10.1016/j.neubiorev.2021.02.038 pmid: 33667552 |
[5] |
Le Berre AP. Emotional processing and social cognition in alcohol use disorder[J]. Neuropsychology, 2019, 33(6):808-821.
doi: 10.1037/neu0000572 URL |
[6] |
Jacob A, Wang P. Alcohol intoxication and cognition: implications on mechanisms and therapeutic strategies[J]. Front Neurosci, 2020, 14:102.
doi: 10.3389/fnins.2020.00102 URL |
[7] |
Topiwala A, Ebmeier KP. Effects of drinking on late-life brain and cognition[J]. Evid Based Ment Health, 2018, 21(1):12-15.
doi: 10.1136/eb-2017-102820 URL |
[8] |
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction[J]. Handb Exp Pharmacol, 2014, 220:223-250.
doi: 10.1007/978-3-642-45106-5_9 pmid: 24668475 |
[9] |
Boschen KE, Klintsova AY. Neurotrophins in the brain: Interaction with alcohol exposure during development[J]. Vitam Horm, 2017, 104:197-242.
doi: S0083-6729(16)30057-7 pmid: 28215296 |
[10] |
Carito V, Ceccanti M, Ferraguti G, et al. NGF and BDNF alterations by prenatal alcohol exposure[J]. Curr Neuropharmacol, 2019, 17: 308-317.
doi: 10.2174/1570159X15666170825101308 pmid: 28847297 |
[11] |
Heberlein A, Büscher P, Schuster R, et al. Do changes in the BDNF promoter methylation indicate the risk of alcohol relapse?[J]. Eur Neuropsychopharmacol, 2015, 25(11):1892-1897.
doi: 10.1016/j.euroneuro.2015.08.018 pmid: 26404404 |
[12] |
Silva-Peña D, García-Marchena N, Alén F, et al. Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats[J]. Addict Biol, 2019, 24(5):1019-1033.
doi: 10.1111/adb.12668 pmid: 30277635 |
[13] |
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders[J]. Nat Rev Neurol, 2018, 14(3):133-150.
doi: 10.1038/nrneurol.2017.188 pmid: 29377008 |
[14] |
Rubio-Araiz A, Porcu F, Pérez-Hernández M. et al. Disruption of blood-brain barrier integrity in postmortem alcoholic brain: Preclinical evidence of TLR4 involvement from a binge-like drinking model[J]. Addict Biol, 2017, 22(4):1103-1116.
doi: 10.1111/adb.12376 pmid: 26949123 |
[15] |
Wei J, Qin L, Fu Y, Dai Y, Wen Y, Xu S. Long-term consumption of alcohol exacerbates neural lesions by destroying the functional integrity of the blood-brain barrier[J]. Drug Chem Toxicol, 2022, 45(1):231-238.
doi: 10.1080/01480545.2019.1681444 URL |
[16] |
Tachibana M, Holm ML, Liu CC, et al. APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1[J]. J Clin Invest, 2019, 129(3):1272-1277.
doi: 10.1172/JCI124853 pmid: 30741718 |
[17] |
Zhao XS, Peng J, Wu Q, et al. Imbalanced cholesterol metabolism in Alzheimer's disease[J]. Clin Chim Acta, 2016, 456:107-114.
doi: 10.1016/j.cca.2016.02.024 URL |
[18] |
Liu CC, Hu J, Zhao N, et al. Astrocytic LRP1 mediates Brain Aβ clearance and impacts amyloid deposition[J]. J Neurosci, 2017, 37(15):4023-4031.
doi: 10.1523/JNEUROSCI.3442-16.2017 URL |
[19] | Cai Z, Qiao PF, Wan CQ, et al. Role of blood-brain barrier in alzheimer’s disease[J]. Alzheim Dis, 2018, 63 (4): 1223-1234. |
[20] |
Sánchez-Campillo M, Ruiz-Pastor MJ, Gázquez A, et al. Decreased blood level of MFSD2a as a potential biomarker of Alzheimer's disease[J]. Int J Mol Sci, 2019, 21(1):70.
doi: 10.3390/ijms21010070 URL |
[21] |
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11): 1016-1024.
doi: S1474-4422(18)30318-1 pmid: 30353860 |
[22] |
Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease[J]. Cells, 2019, 8(2):90.
doi: 10.3390/cells8020090 URL |
[23] |
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour[J]. Nat Rev Neurosci, 2018, 19(4):197-214.
doi: 10.1038/nrn.2018.10 pmid: 29467469 |
[24] |
van de Haar HJ, Burgmans S, Jansen JF, et al. Blood-brain barrier leakage in patients with early alzheimer disease[J], Radiology, 2016, 281(2):527-535.
pmid: 27243267 |
[25] |
van de Haar HJ, Jansen JFA, Jeukens CRLPN, et al. Subtle blood-brain barrier leakage rate and spatial extent: Considerations for dynamic contrast-enhanced MRI[J]. Med Phys, 2017, 44(8):4112-4125.
doi: 10.1002/mp.12328 pmid: 28493613 |
[26] |
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction[J], Nat Med, 2019, 25(2):270-276.
doi: 10.1038/s41591-018-0297-y pmid: 30643288 |
[27] |
Wei J, Dai Y, Wen W, et al. Blood-brain barrier integrity is the primary target of alcohol abuse[J]. Chem Biol Interact, 2021, 337:109400.
doi: 10.1016/j.cbi.2021.109400 URL |
[28] |
Fama R, Le Berre AP, Hardcastle C, et al. Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism[J]. Addict Biol, 2019, 24(2):290-302.
doi: 10.1111/adb.12584 pmid: 29243370 |
[29] | 孙艳红, 夏清荣, 庞良俊, 等. 酒精使用障碍患者认知功能损害的影响因素[J]. 神经损伤与功能重建, 2021, 16(5):283-286. |
[30] |
Ridley NJ, Draper B, Withall A. Alcohol-related dementia: An update of the evidence[J]. Alzheimers Res Ther, 2013, 5(1):3.
doi: 10.1186/alzrt157 pmid: 23347747 |
[31] |
Gong YS, Hu K, Yang LQ, et al. Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain[J]. Free Radic Biol Med, 2017, 108:163-173.
doi: 10.1016/j.freeradbiomed.2017.03.019 URL |
[32] | Yung YC. Stoddard NC.& Chun J. LPA receptor signaling: Pharmacology, physiology, and pathophysiology[J]. Lipid Res, 2014, 55 (7): 1192-1214. |
[33] |
García-Marchena N, Pizarro N, Pavón FJ, et al. Potential association of plasma lysophosphatidic acid (LPA) species with cognitive impairment in abstinent alcohol use disorders outpatients[J]. Sci Rep, 2020, 10(1):17163.
doi: 10.1038/s41598-020-74155-0 pmid: 33051508 |
[34] |
Zhang JB, Cong YN, Li ZG, et al. Plasma phospholipids are associated with mild cognitive impairment in type 2 diabetic patients[J]. Curr Alzheimer Res, 2017, 14(6): 592-597.
doi: 10.2174/1567205013666161201200722 URL |
[35] |
Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, et al. Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA1 receptor knockout mice[J]. PLoS One, 2011, 6(9):e25522.
doi: 10.1371/journal.pone.0025522 URL |
[36] |
Silva-Peña D, García-Marchena N, Alén F, et al. Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats[J]. Addict Biol, 2019, 24(5):1019-1033.
doi: 10.1111/adb.12668 pmid: 30277635 |
[37] |
Silva-Peña D, Rivera P, Alén F, et al. Oleoylethanolamide modulates BDNF-ERK signaling and neurogenesis in the hippocampi of rats exposed to Δ9-THC and ethanol binge drinking during adolescence[J]. Front Mol Neurosci, 2019, 12:96.
doi: 10.3389/fnmol.2019.00096 pmid: 31068789 |
[38] | 杜静, 罗振国. 长期酗酒和酒精相关脑部损伤[J]. 脑与神经疾病杂志, 2023, 31(5):320-323. |
[39] |
Spindler C, Mallien L, Trautmann S, et al. A coordinate-based meta-analysis of white matter alterations in patients with alcohol use disorder[J]. Transl Psychiatry, 2022, 12(1):40.
doi: 10.1038/s41398-022-01809-0 |
[1] | 左腾, 王俊祥. 血清阴性类风湿关节炎发病机制的研究进展[J]. 临床荟萃, 2023, 38(8): 753-756. |
[2] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[3] | 邹琳, 崔轶霞, 张娜娜, 陈思荣. 类风湿关节炎合并骨质疏松症发病机制和相关治疗药物对骨质疏松症影响的研究进展[J]. 临床荟萃, 2023, 38(3): 279-284. |
[4] | 曹宇萌, 张海燕, 刘立新. 非酒精性脂肪性肝病的病理改变与血清铁蛋白和血清铁含量变化关系的meta分析[J]. 临床荟萃, 2023, 38(3): 197-207. |
[5] | 杨晓蓉, 周淑红, 潘亮, 郭莉江. 结缔组织病相关肺动脉高压的发病机制及其筛查的研究进展[J]. 临床荟萃, 2023, 38(10): 944-948. |
[6] | 熊璐, 郭莲. 胰岛素样生长因子-1及其结合蛋白与非酒精性脂肪性肝病发生发展的研究进展[J]. 临床荟萃, 2023, 38(10): 935-939. |
[7] | 王馨雪, 赵丹, 柳惠未, 叶桦, 徐梦丹. 先天免疫反应与非酒精性脂肪性肝病关系的研究进展[J]. 临床荟萃, 2022, 37(9): 846-854. |
[8] | 曾晓晴, 庄伟端, 陈丽芬. 卒中后癫痫发作发病机制的研究进展[J]. 临床荟萃, 2022, 37(2): 174-177. |
[9] | 文洁. 血浆致动脉粥样硬化指数与非酒精性脂肪性肝病的相关性[J]. 临床荟萃, 2022, 37(1): 35-38. |
[10] | 李国焕, 谢旭, 黄志霞, 张铭业, 唐云云. 非酒精性脂肪性肝病的瞬时弹性成像技术和声辐射力脉冲成像技术的定量评价[J]. 临床荟萃, 2021, 36(6): 535-539. |
[11] | 王玲丽, 赵志强, 靳新荣. μ阿片受体1基因rs1799971多态性和酒精依赖关系的Meta分析[J]. 临床荟萃, 2021, 36(4): 303-310. |
[12] | 叶菁菁, 秦瑜, 赵丽, 杨玲. 身体形态指数与新诊2型糖尿病合并非酒精性脂肪肝的关系[J]. 临床荟萃, 2021, 36(2): 144-148. |
[13] | 张慧卿,路延朋,宋学琴. CAPN3基因突变导致的Calpainopathy的发病机制、临床表现和实验室检测研究进展[J]. 临床荟萃, 2020, 35(6): 564-567. |
[14] | 李晶雪,李哲,王天俊. 帕金森病伴发抑郁发病机制及治疗的研究进展[J]. 临床荟萃, 2019, 34(8): 759-763. |
[15] | 李晶雪,王天俊. 卒中后抑郁发病机制及治疗研究进展[J]. 临床荟萃, 2019, 34(6): 572-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||