临床荟萃 ›› 2021, Vol. 36 ›› Issue (9): 861-864.doi: 10.3969/j.issn.1004-583X.2021.09.019
• 综述 • 上一篇
收稿日期:
2020-12-07
出版日期:
2021-09-20
发布日期:
2021-10-05
通讯作者:
平芬
E-mail:pingfen2003@126.com
基金资助:
Received:
2020-12-07
Online:
2021-09-20
Published:
2021-10-05
摘要:
肺康复在慢性阻塞性肺疾病治疗中发挥重要作用,运动训练作为肺康复计划的基本组成部分,可提高患者运动能力和改善日常生活能力。本文将对肺康复中运动训练的病理生理学、方式及处方进行综述,为临床COPD患者的运动训练治疗提供新思路。
中图分类号:
田玉静, 李萍, 黄家容, 张宁, 平芬. 运动训练在慢性阻塞性肺疾病肺康复中的应用[J]. 临床荟萃, 2021, 36(9): 861-864.
[1] | Alvar Agusti M C R I, Barcelona S. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease 2020 REPORT[J]. Global Initiative for Chronic Obstructive Lung Disease, 2020:1-125. |
[2] |
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS Med, 2006, 3(11):e442.
doi: 10.1371/journal.pmed.0030442 URL |
[3] |
Nolan CM, Rochester CL. Exercise training modalities for people with chronic obstructive pulmonary disease[J]. COPD, 2019, 16(5-6):378-389.
doi: 10.1080/15412555.2019.1637834 URL |
[4] |
Vaes AW, Delbressine JML, Mesquita R, et al. Impact of pulmonary rehabilitation on activities of daily living in patients with chronic obstructive pulmonary disease[J]. J Appl Physiol (1985), 2019, 126(3):607-615.
doi: 10.1152/japplphysiol.00790.2018 URL |
[5] | Mahoney K, Pierce J, Papo S, et al. Efficacy of adding activity of daily living simulation training to traditional pulmonary rehabilitation on dyspnea and health-related quality-of-life[J]. PLoS One, 2020, 15(8):e237973. |
[6] |
Stubbings AK, Moore AJ, Dusmet M, et al. Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease[J]. J Physiol, 2008, 586(10):2637-2650.
doi: 10.1113/jphysiol.2007.149799 URL |
[7] |
Degens H, Swisher AK, Heijdra YF, et al. Apoptosis and Id2 expression in diaphragm and soleus muscle from the emphysematous hamster[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 293(1):R135-R144.
doi: 10.1152/ajpregu.00046.2007 URL |
[8] |
Testelmans D, Crul T, Maes K, et al. Atrophy and hypertrophy signalling in the diaphragm of patients with COPD[J]. Eur Respir J, 2010, 35(3):549-556.
doi: 10.1183/09031936.00091108 pmid: 19717478 |
[9] |
Hill K, Jenkins SC, Philippe DL, et al. High-intensity inspiratory muscle training in COPD[J]. Eur Respir J, 2006, 27(6):1119-1128.
pmid: 16772388 |
[10] |
Yin J, Yang L, Xie Y, et al. Dkk3 dependent transcriptional regulation controls age related skeletal muscle atrophy[J]. Nat Commun, 2018, 9(1):1752.
doi: 10.1038/s41467-018-04038-6 URL |
[11] | Qaisar R, Karim A, Muhammad T, et al. Circulating biomarkers of accelerated sarcopenia in respiratory diseases[J]. Biology (Basel), 2020, 9(10):322. |
[12] |
Rahman I. Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: Antioxidant therapeutic targets[J]. Curr Drug Targets Inflamm Allergy, 2002, 1(3):291-315.
doi: 10.2174/1568010023344607 URL |
[13] |
Klimathianaki M, Vaporidi K, Georgopoulos D. Respiratory muscle dysfunction in COPD: From muscles to cell[J]. Curr Drug Targets, 2011, 12(4):478-488.
pmid: 21194407 |
[14] |
Testelmans D, Crul T, Maes K, et al. Atrophy and hypertrophy signalling in the diaphragm of patients with COPD[J]. Eur Respir J, 2010, 35(3):549-556.
doi: 10.1183/09031936.00091108 pmid: 19717478 |
[15] |
Allaire J, Maltais F, Doyon JF, et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD[J]. Thorax, 2004, 59(8):673-678.
pmid: 15282387 |
[16] |
Gosker HR, Hesselink MK, Duimel H, et al. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD[J]. Eur Respir J, 2007, 30(1):73-79.
pmid: 17428811 |
[17] | 金丹, 杨剑, 孙怡宁, 等. 运动锻炼对慢性阻塞性肺疾病患者肺康复的干预效果[J]. 北京生物医学工程, 2017, 36(5):540-544,549. |
[18] |
Alison JA, McKeough ZJ, Johnston K, et al. Australian and New Zealand Pulmonary Rehabilitation Guidelines[J]. Respirology, 2017, 22(4):800-819.
doi: 10.1111/resp.2017.22.issue-4 URL |
[19] |
Wootton SL, Ng LW, McKeough ZJ, et al. Ground-based walking training improves quality of life and exercise capacity in COPD[J]. Eur Respir J, 2014, 44(4):885-894.
doi: 10.1183/09031936.00078014 pmid: 25142484 |
[20] |
Higashimoto Y, Ando M, Sano A, et al. Effect of pulmonary rehabilitation programs including lower limb endurance training on dyspnea in stable COPD: A systematic review and meta-analysis[J]. Respir Investig, 2020, 58(5):355-366.
doi: S2212-5345(20)30095-2 pmid: 32660900 |
[21] |
Felcar JM, Probst VS, de Carvalho DR, et al. Effects of exercise training in water and on land in patients with COPD: A randomised clinical trial[J]. Physiotherapy, 2018, 104(4):408-416.
doi: S0031-9406(18)30043-9 pmid: 30477678 |
[22] | 杨娟, 朱慕云. 吸气肌群功能康复在慢阻肺患者康复治疗中的作用[J]. 临床肺科杂志, 2018, 23(9):1716-1719. |
[23] | 李涛, 胡蓉, 陈子, 等. 八段锦治疗稳定期慢性阻塞性肺疾病的价值及其应用[J]. 中华物理医学与康复杂志, 2018, 40(2):158-160. |
[24] | 周蔚, 朱黎明, 曾丹, 等. 呼吸肌训练在慢性阻塞性肺疾病肺康复中的应用及研究进展[J]. 中国医师杂志, 2017, 19(11):1627-1630. |
[25] | Cabral LF, D'Elia Tda C, Marins Dde S, et al. Pursed lip breathing improves exercise tolerance in COPD: A randomized crossover study[J]. Eur J Phys Rehabil Med, 2015, 51(1):79-88. |
[26] |
Yamaguti WP, Claudino RC, Neto AP, et al. Diaphragmatic breathing training program improves abdominal motion during natural breathing in patients with chronic obstructive pulmonary disease: A randomized controlled trial[J]. Arch Phys Med Rehabil, 2012, 93(4):571-577.
doi: 10.1016/j.apmr.2011.11.026 URL |
[27] |
Li JX, Hong Y, Chan KM. Tai Chi: Physiological characteristics and beneficial effects on health[J]. Br J Sports Med, 2001, 35(3):148-156.
doi: 10.1136/bjsm.35.3.148 URL |
[28] |
Guo C, Xiang G, Xie L, et al. Effects of Tai Chi training on the physical and mental health status in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis[J]. J Thorac Dis, 2020, 12(3):504-521.
doi: 10.21037/jtd URL |
[29] |
Yang Y, Chen K, Tang W, et al. Influence of Baduanjin on lung function, exercise capacity, and quality of life in patients with mild chronic obstructive pulmonary disease[J]. Medicine (Baltimore), 2020, 99(37):e22134.
doi: 10.1097/MD.0000000000022134 URL |
[30] |
Shen J, Nie X, Huang SY, et al. Neuromuscular electrical stimulation improves muscle atrophy induced by chronic hypoxia-hypercapnia through the MicroRNA-486/PTEN/FoxO1 pathway[J]. Biochem Biophys Res Commun, 2019, 509(4):1021-1027.
doi: 10.1016/j.bbrc.2018.12.147 URL |
[31] |
Vieira PJ, Chiappa AM, Cipriano GJ, et al. Neuromuscular electrical stimulation improves clinical and physiological function in COPD patients[J]. Respir Med, 2014, 108(4):609-620.
doi: 10.1016/j.rmed.2013.12.013 pmid: 24418570 |
[32] | Hill K, Cavalheri V, Mathur S, et al. Neuromuscular electrostimulation for adults with chronic obstructive pulmonary disease[J]. Cochrane Database Syst Rev, 2018, 5:D10821. |
[33] | Wu X, Hu X, Hu W, et al. Effects of neuromuscular electrical stimulation on exercise capacity and quality of life in COPD patients: A systematic review and meta-analysis[J]. Biosci Rep, 2020, 40(5): BSR20191912. |
[34] |
Dellweg D, Reissig K, Hoehn E, et al. Inspiratory muscle training during rehabilitation in successfully weaned hypercapnic patients with COPD[J]. Respir Med, 2017, 123:116-123.
doi: 10.1016/j.rmed.2016.12.006 URL |
[35] |
Le Pimpec-Barthes F, Legras A, Arame A, et al. Diaphragm pacing: The state of the art[J]. J Thorac Dis, 2016, 8(Suppl 4):S376-S386.
doi: 10.21037/jtd URL |
[36] | He C, Ren S, Du Q, et al. Adjuvant therapy: YiqiDitanTongfu decoction with external diaphragm pacer for chronic obstructive pulmonary disease patients with difficulty weaning from mechanical ventilation[J]. Altern Ther Health Med, 2020, 26(3):32-38. |
[37] |
Alansare A, Alford K, Lee S, et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on heart rate variability in physically inactive adults[J]. Int J Environ Res Public Health, 2018, 15(7):1508.
doi: 10.3390/ijerph15071508 URL |
[38] |
Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation[J]. Sports Med, 2012, 42(7):587-605.
doi: 10.2165/11631910-000000000-00000 URL |
[39] |
Osadnik CR, Rodrigues FM, Camillo CA, et al. Principles of rehabilitation and reactivation[J]. Respiration, 2015, 89(1):2-11.
doi: 10.1159/000370246 URL |
[40] | 刘海舰, 陈淑娟, 刘锦铭. 肺动脉高压患者肺功能及心肺运动试验特点[J]. 中华结核和呼吸杂志, 2014, 37(7):532-534. |
[41] | 洪谊, 高怡, 郑劲平. 心肺运动试验在肺部疾病中的应用及研究进展[J]. 中华结核和呼吸杂志, 2020, 43(4):380-381. |
[42] |
Stringer W, Marciniuk D. The role of cardiopulmonary exercise testing (CPET) in pulmonary rehabilitation (PR) of chronic obstructive pulmonary disease (COPD) patients[J]. COPD, 2018, 15(6):621-631.
doi: 10.1080/15412555.2018.1550476 pmid: 30595047 |
[43] | 李文丹, 凌敏. 慢性阻塞性肺疾病肺康复治疗新进展[J]. 新疆医学, 2018, 48(9):1019-1022. |
[1] | 王沁濡, 尹琴, 李娟, 甘洪玉. 中医药治疗慢性阻塞性肺疾病合并肺动脉高压的研究进展[J]. 临床荟萃, 2024, 39(2): 188-192. |
[2] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[3] | 武颖颖, 孔维香. 端粒及端粒酶逆转录酶基因与慢性阻塞性肺疾病相关性的研究进展[J]. 临床荟萃, 2023, 38(8): 749-752. |
[4] | 张莹, 涂平华, 吴展陵. 慢性阻塞性肺疾病表型的研究进展[J]. 临床荟萃, 2023, 38(4): 377-380. |
[5] | 郑志璇, 平芬, 李萍, 吴国飘. 阻塞性睡眠呼吸暂停低通气综合征与支气管哮喘关系的研究进展[J]. 临床荟萃, 2023, 38(10): 940-943. |
[6] | 王雪峰. 中度稳定期慢性阻塞性肺疾病疲劳与多维度指标的关系[J]. 临床荟萃, 2022, 37(8): 704-707. |
[7] | 张志萍, 张宝民, 秦伟, 高凌杰, 陈冬. 肠内营养支持对慢性阻塞性肺病急性加重期机械通气患者营养和预后的影响[J]. 临床荟萃, 2022, 37(6): 510-514. |
[8] | 付群, 郭迪, 赵文飞. 哮喘-慢阻肺重叠、哮喘和慢性阻塞性肺疾病患者诱导痰VEGF、ICAM-1、IL-13、呼出气一氧化氮水平的变化及临床意义[J]. 临床荟萃, 2021, 36(6): 513-516. |
[9] | 夏晓黎, 马艳萍, 王亚锋. 充分氧合下综合肺康复治疗对老年COPD稳定期患者的临床疗效评价[J]. 临床荟萃, 2021, 36(2): 134-138. |
[10] | 何欣, 黄玉琴, 青玉凤, 张全波. 类风湿关节炎相关性肺间质病变治疗进展[J]. 临床荟萃, 2021, 36(1): 75-79. |
[11] | 彭理明,周蓉. 慢性阻塞性肺疾病住院患者营养状况和远期病死率的关系[J]. 临床荟萃, 2020, 35(9): 833-836. |
[12] | 周盈,曹磊,平芬. 慢性阻塞性肺疾病相关炎性细胞因子的研究进展[J]. 临床荟萃, 2020, 35(3): 273-276. |
[13] | 张霞1,刘中洋2. 慢性阻塞性肺疾病伴焦虑的相关因素的研究进展[J]. 临床荟萃, 2020, 35(2): 185-188. |
[14] | 徐艳霞, 王莉, 贺静, 常小红. 基于双气相定量CT在慢性阻塞性肺疾病影像学表型的研究进展[J]. 临床荟萃, 2020, 35(2): 189-192. |
[15] | 张琴霞, a, 张海福, b, 吕群a. 替格瑞洛在冠心病合并慢性阻塞性肺病中应用的有效性和安全性meta分析[J]. 临床荟萃, 2020, 35(11): 965-970. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||