临床荟萃 ›› 2022, Vol. 37 ›› Issue (10): 953-956.doi: 10.3969/j.issn.1004-583X.2022.10.015
收稿日期:
2022-06-08
出版日期:
2022-10-20
发布日期:
2022-11-26
通讯作者:
王德峰
E-mail:wdf991217@126.com
Received:
2022-06-08
Online:
2022-10-20
Published:
2022-11-26
摘要:
目前糖尿病已经成为影响人类身心健康的主要公共卫生问题和重大疾病,造成了巨大的经济和社会负担,迫切需要有效的治疗方法和预防措施。糖尿病的发病机制复杂而不明确,但越来越多的研究表明,肠道菌群的改变与糖尿病的发生发展有着密切的联系。本研究主要通过对肠道菌群治疗糖尿病的研究进展进行综述,旨在利用肠道菌群靶向治疗糖尿病,为临床肠道菌群辅助治疗糖尿病提供理论依据。
中图分类号:
杨燕, 王德峰. 肠道菌群在糖尿病治疗中的研究进展[J]. 临床荟萃, 2022, 37(10): 953-956.
[1] |
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119.
doi: 10.1016/j.diabres.2021.109119 URL |
[2] |
Wu H, Tremaroli V, Schmidt C, et al. The gut microbiota in prediabetes and diabetes: A population-based cross-sectional study[J]. Cell Metab, 2020, 32(3):379-390.e3.
doi: S1550-4131(20)30312-0 pmid: 32652044 |
[3] |
Wei S, Brejnrod AD, Trivedi U, et al. Impact of intensive lifestyle intervention on gut microbiota composition in type 2 diabetes: A post-hoc analysis of a randomized clinical trial[J]. Gut Microbes, 2022, 14(1): 2005407.
doi: 10.1080/19490976.2021.2005407 URL |
[4] |
Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study[J]. Nature, 2018, 562(7728): 589-594.
doi: 10.1038/s41586-018-0620-2 URL |
[5] |
Gou W, Ling CW, He Y, et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes[J]. Diabetes Care, 2021, 44(2): 358-366.
doi: 10.2337/dc20-1536 pmid: 33288652 |
[6] |
Cunningham AL, Stephens JW, Harris DA. Gut microbiota influence in type 2 diabetes mellitus (T2DM)[J]. Gut Pathog, 2021, 13(1): 50.
doi: 10.1186/s13099-021-00446-0 pmid: 34362432 |
[7] |
Jovel J, Patterson J, Wang W, et al. Characterization of the gut microbiome using 16s or shotgun metagenomics[J]. Front Microbiol, 2016, 7: 459.
doi: 10.3389/fmicb.2016.00459 pmid: 27148170 |
[8] |
Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome[J]. Nature, 2013, 493(7430): 45-50.
doi: 10.1038/nature11711 URL |
[9] |
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638.
doi: 10.1126/science.1110591 pmid: 15831718 |
[10] |
Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64.
doi: 10.1038/nature18846 URL |
[11] |
Reitmeier S, Kiessling S, Clavel T, et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes[J]. Cell Host Microbe, 2020, 28(2):258-272.e6.
doi: S1931-3128(20)30343-7 pmid: 32619440 |
[12] |
Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study[J]. BMC Med, 2013, 11: 46.
doi: 10.1186/1741-7015-11-46 pmid: 23433344 |
[13] | Mokhtari P, Metos J, Anandh Babu PV. Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: Possible mechanisms, current knowledge, and challenges[J]. Gut Microbes, 2021, 13(1):1-18. |
[14] | Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology[J]. EBio Medicine, 2020, 51: 102590. |
[15] |
Ho J, Nicolucci AC, Virtanen H, et al. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes[J]. J Clin Endocrinol Metab, 2019, 104(10): 4427-4440.
doi: 10.1210/jc.2019-00481 pmid: 31188437 |
[16] |
Groele L, Szajewska H, Szalecki M, et al. Lack of effect of GG and Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: A randomised controlled trial[J]. BMJ Open Diabetes Res Care, 2021, 9(1):e001523.
doi: 10.1136/bmjdrc-2020-001523 URL |
[17] |
Zare Javid A, Aminzadeh M, Haghighi-Zadeh MH, et al. The effects of synbiotic supplementation on glycemic status, lipid profile, and biomarkers of oxidative stress in type 1 diabetic patients. A placebo-controlled, double-blind, randomized clinical trial[J]. Diabetes Metab Syndr Obes, 2020, 13: 607-617.
doi: 10.2147/DMSO.S238867 URL |
[18] |
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156.
doi: 10.1126/science.aao5774 pmid: 29590046 |
[19] |
Zhang Y, Gu Y, Ren H, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study)[J]. Nat Commun, 2020, 11(1): 5015.
doi: 10.1038/s41467-020-18414-8 pmid: 33024120 |
[20] |
Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nat Med, 2019, 25(7): 1096-1103.
doi: 10.1038/s41591-019-0495-2 pmid: 31263284 |
[21] |
Kanazawa A, Aida M, Yoshida Y, et al. Effects of synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes mellitus: A randomized controlled study[J]. Nutrients, 2021, 13(2):558.
doi: 10.3390/nu13020558 URL |
[22] |
Palacios T, Vitetta L, Coulson S, et al. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia: A randomised controlled pilot study[J]. Nutrients, 2020, 12(7):2041.
doi: 10.3390/nu12072041 URL |
[23] | Liu L, Chen Y, Wu Q, et al. Sodium butyrate attenuated diabetes-induced intestinal inflammation by modulating gut microbiota[J]. Evid Based Complement Alternat Med, 2022, 2022: 4646245. |
[24] |
Mariño E, Richards JL, Mcleod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes[J]. Nat Immunol, 2017, 18(5): 552-562.
doi: 10.1038/ni.3713 pmid: 28346408 |
[25] |
Guo Y, Xiao Z, Wang Y, et al. Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression[J]. Front Endocrinol (Lausanne), 2018, 9: 630.
doi: 10.3389/fendo.2018.00630 URL |
[26] |
De Groot PF, Nikolic T, Imangaliyev S, et al. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: A randomised controlled trial[J]. Diabetologia, 2020, 63(3): 597-610.
doi: 10.1007/s00125-019-05073-8 pmid: 31915895 |
[27] |
Matheus VA, Monteiro L, Oliveira RB, et al. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice[J]. Exp Biol Med (Maywood), 2017, 242(12): 1214-1226.
doi: 10.1177/1535370217708188 pmid: 28504618 |
[28] |
Roshanravan N, Mahdavi R, Alizadeh E, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: A randomized double-blind, placebo-controlled trial[J]. Horm Metab Res, 2017, 49(11): 886-891.
doi: 10.1055/s-0043-119089 pmid: 28962046 |
[29] |
Khosravi Z, Hadi A, Tutunchi H, et al. The effects of butyrate supplementation on glycemic control, lipid profile, blood pressure, nitric oxide level and glutathione peroxidase activity in type 2 diabetic patients: A randomized triple -blind, placebo-controlled trial[J]. Clin Nutr ESPEN, 2022, 49: 79-85.
doi: 10.1016/j.clnesp.2022.03.008 pmid: 35623879 |
[30] |
De Groot P, Nikolic T, Pellegrini S, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial[J]. Gut, 2021, 70(1):92-105.
doi: 10.1136/gutjnl-2020-322630 pmid: 33106354 |
[31] | Xie YC, Jing XB, Chen X, et al. Fecal microbiota transplantation treatment for type 1 diabetes mellitus with malnutrition: A case report[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221117449. |
[32] |
He L, Chen R, Zhang B, et al. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus[J]. Front Immunol, 2022, 13: 930872.
doi: 10.3389/fimmu.2022.930872 URL |
[33] |
Wang H, Lu Y, Yan Y, et al. Promising treatment for type 2 diabetes: Fecal microbiota transplantation reverses insulin resistance and impaired islets[J]. Front Cell Infect Microbiol, 2019, 9: 455.
doi: 10.3389/fcimb.2019.00455 URL |
[34] |
Su L, Hong Z, Zhou T, et al. Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation[J]. Sci Rep, 2022, 12(1): 1152.
doi: 10.1038/s41598-022-05127-9 pmid: 35064189 |
[35] |
Ding D, Yong H, You N, et al. Prospective study reveals host microbial determinants of clinical response to fecal microbiota transplant therapy in type 2 diabetes patients[J]. Front Cell Infect Microbiol, 2022, 12: 820367.
doi: 10.3389/fcimb.2022.820367 URL |
[36] |
Ng SC, Xu Z, Mak JWY, et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: A 24-week, double-blind, randomised controlled trial[J]. Gut, 2022, 71(4): 716-723.
doi: 10.1136/gutjnl-2020-323617 URL |
[1] | 吕莎莎, 宋金兰, 石健. m.3243A>G突变相关线粒体糖尿病1例并文献复习[J]. 临床荟萃, 2024, 39(2): 160-163. |
[2] | 张晓璐, 李红山. 自身免疫性肝炎发病机制研究进展——聚焦“肠道菌群与免疫系统相互作用”[J]. 临床荟萃, 2024, 39(2): 177-182. |
[3] | 张佳楠, 孙琳琳, 詹潇燕, 李冰. 血清维生素B12与老年2型糖尿病轻度认知功能障碍的关系[J]. 临床荟萃, 2024, 39(1): 34-37. |
[4] | 位增, 曹灵, 佘敦敏, 刘彦, 王艳, 张真稳. 54例2型糖尿病患者合并新型冠状病毒感染的死亡原因分析[J]. 临床荟萃, 2023, 38(9): 806-812. |
[5] | 张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850. |
[6] | 杨鑫, 许华娇. 基于Web of Science糖尿病患者心理干预研究的文献计量学分析[J]. 临床荟萃, 2023, 38(8): 731-736. |
[7] | 马光宇, 罗慧娟, 王冬菊, 肖小敏. 黄芩苷治疗糖尿病及其并发症的研究进展[J]. 临床荟萃, 2023, 38(8): 757-762. |
[8] | 张欣欣, 刘国庆, 王蓓蓓. 糖尿病酮症酸中毒引起极度血小板增多症1例并文献复习[J]. 临床荟萃, 2023, 38(8): 719-721. |
[9] | 金家辉, 杨阳, 秦铜, 何雨欣, 苏美华. 补充益生菌对2型糖尿病患者糖代谢改善的meta分析[J]. 临床荟萃, 2023, 38(7): 581-587. |
[10] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[11] | 杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
[12] | 陈婷, 刘金彦. 中药靶向PI3K/Akt/mTOR通路调节自噬在糖尿病肾脏病中的研究进展[J]. 临床荟萃, 2023, 38(6): 564-568. |
[13] | 苏晨蓓, 王富军. 糖尿病下肢动脉疾病介入治疗疗效的研究进展[J]. 临床荟萃, 2023, 38(6): 569-572. |
[14] | 吴亚楠, 延天美, 梁鹏, 魏立民. 中老年糖尿病患者抑郁症状的高危识别[J]. 临床荟萃, 2023, 38(6): 516-520. |
[15] | 吕丽丽, 翟满满, 丁小艳, 陈永清. 线粒体转录因子A介导的线粒体功能障碍在糖尿病心肌病中的作用[J]. 临床荟萃, 2023, 38(5): 465-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||