临床荟萃 ›› 2022, Vol. 37 ›› Issue (12): 1148-1152.doi: 10.3969/j.issn.1004-583X.2022.12.016
• 综述 • 上一篇
收稿日期:
2022-10-14
出版日期:
2022-12-20
发布日期:
2023-01-18
通讯作者:
徐圣秋
E-mail:513857996@qq.com
基金资助:
Received:
2022-10-14
Online:
2022-12-20
Published:
2023-01-18
摘要:
基质金属蛋白酶(matrix metalloproteinases,MMPs)是一种能够降解几乎所有类型的细胞外基质的酶,在多种生理过程中发挥着重要作用,同时受到多种机制调控,包括天然的金属蛋白酶组织抑制剂(tissue inhibitors of metalloproteinases,TIMPs)。糖尿病视网膜病变(diabetic retinopathy,DR)是最常见的糖尿病并发症,是后天致盲的主要原因之一。MMP-2、MMP-9在DR的作用已经得到证实,主要引起患者血视网膜屏障(blood retinal barrier,BRB)的破坏。本文通过对MMPs在DR中的研究现状、 MMPs种类、针对MMPs靶点的新疗法进行综述,旨在为以MMPs为靶点的DR新疗法在临床上的应用提供依据。
中图分类号:
朱素华, 徐圣秋. 基质金属蛋白酶抑制剂在糖尿病视网膜病变的研究进展[J]. 临床荟萃, 2022, 37(12): 1148-1152.
[1] |
Sun H, Saeedi P, Karuranga S, Pinkepank M, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119-109131.
doi: 10.1016/j.diabres.2021.109119 URL |
[2] | Polemiti E, Baudry J, Kuxhaus O, et al. BMI and BMI change following incident type 2 diabetes and risk of microvascular and macrovascular complications: The EPIC-Potsdam study[J]. Diabetologia, 2021, 61(4):814-825. |
[3] |
Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy[J]. Indian J Ophthalmol, 2012, 60(5):428-431.
doi: 10.4103/0301-4738.100542 pmid: 22944754 |
[4] |
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J]. Redox Biol, 2020, 37:101799.
doi: 10.1016/j.redox.2020.101799 URL |
[5] |
Dulull N, Kwa F, Osman N, et al. Recent advances in the management of diabetic retinopathy[J]. Drug Discov Today, 2019, 24(8): 1499-1509.
doi: S1359-6446(18)30392-1 pmid: 30954684 |
[6] |
Bahrami B, Shen W, Zhu L, et al. Effects of VEGF inhibitors on human retinal pigment epithelium under high glucose and hypoxia[J]. Clin Exp Ophthalmol, 2019, 47(8):1074-1081.
doi: 10.1111/ceo.13579 pmid: 31265210 |
[7] |
Sunder M, Christopher H, Chao DL. SGLT2 inhibitor-induced low-grade ketonemia ameliorates retinal hypoxia in diabetic retinopathy-a novel hypothesis[J]. J Clin Endocr Metab, 2021, 106(5):1235-1244.
doi: 10.1210/clinem/dgab050 URL |
[8] |
Li S, Lu S, Zhang L, et al. Basic regulatory effects and clinical value of metalloproteinase-14 and extracellular matrix metalloproteinase inducer in diabetic retinopathy[J]. Mater Express, 2021, 11(6):873-879.
doi: 10.1166/mex.2021.1982 URL |
[9] |
Cabral Pacheco GA, Garza Veloz I, Castruita De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24): 9739-9793.
doi: 10.3390/ijms21249739 URL |
[10] |
Nogueira RC, Pinheiro LC, Sanches-Lopes JM, et al. Omeprazole induces vascular remodeling by mechanisms involving xanthine oxidoreductase and matrix metalloproteinase activation[J]. Biochem Pharmacol, 2021, 190:114633.
doi: 10.1016/j.bcp.2021.114633 URL |
[11] |
Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: A tissue culture assay[J]. Proc Natl Acad Sci USA, 1962, 48(6):1014-1022.
doi: 10.1073/pnas.48.6.1014 URL |
[12] |
Opdenakker G, El-Asrar AA. Metalloproteinases mediate diabetes-induced retinal neuropathy and vasculopathy[J]. Cell Mol Life Sci, 2019, 76(16):3157-3166.
doi: 10.1007/s00018-019-03177-3 pmid: 31183508 |
[13] |
Wang N, Yuan Y, Sun S, et al. MicroRNA-204-5p participates in atherosclerosis via targeting MMP-9[J]. Open Med, 2020, 15:231-239.
doi: 10.1515/med-2020-0034 URL |
[14] |
Wang H, Huang L, Wu L, et al. The MMP-2/TIMP-2 system in Alzheimer disease[J]. CNS Neurol Disord Drug Targets, 2020, 19(6):402-416.
doi: 10.2174/1871527319666200812223007 URL |
[15] |
Prado A, Bannwart CM, Shinkai V, et al. Phyto-derived products as matrix metalloproteinases inhibitors in cardiovascular diseases[J]. Curr Hypertens Rep, 2020, 17(1):47-58.
doi: 10.1007/s11906-015-0559-8 URL |
[16] |
Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: The role of DNA methylation[J]. Int J Mol Sci, 2020, 21(5):1771-1786.
doi: 10.3390/ijms21051771 URL |
[17] | Li W, Xiao H. Scutellaria barbata D. Scutellaria barbata.don polysaccharides inhibit high glucose-induced proliferation and angiogenesis of retinal vascular endothelial cells[J]. Diabetes Metab, 2021, 14:2341-2440. |
[18] |
Liu D, Xu H, Zhang C, et al. Erythropoietin maintains VE-cadherin expression and barrier function in experimental diabetic retinopathy via inhibiting VEGF/VEGFR2/Src signaling pathway[J]. Life Sci, 2020, 259:118273-118283.
doi: 10.1016/j.lfs.2020.118273 URL |
[19] |
Gaonkar B, Prabhu K, Rao P, et al. Plasma angiogenesis and oxidative stress markers in patients with diabetic retinopathy[J]. Biomarkers. 2020, 25(5):397-401.
doi: 10.1080/1354750X.2020.1774654 pmid: 32529845 |
[20] |
Ishizaki E, Takai S, Ueki M, et al. Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy[J]. Am J Ophthalmol, 2006, 141(1):129-134.
doi: 10.1016/j.ajo.2005.08.066 pmid: 16386986 |
[21] |
Abu El-Asrar AM, Ahmad A, Bittoun E, et al. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2018, 96: e27-e37.
doi: 10.1111/aos.13451 URL |
[22] |
Abu El-Asrar AM, Ahmad A, Alam K, et al. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2017, 95(7):697-704.
doi: 10.1111/aos.13284 pmid: 27860331 |
[23] |
Solanki A, Bhatt LK, Johnston TP, et al. Targeting matrix metalloproteinases for diabetic retinopathy: The way ahead?[J]. Curr Protein Pept Sc, 2019, 20(4):324-333.
doi: 10.2174/1389203719666180914093109 pmid: 30215334 |
[24] |
Peeters SA, Engelen L, Buijs J, et al. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The eurodiab prospective complications study[J]. Cardiovasc Diabetol, 2015, 14:31.
doi: 10.1186/s12933-015-0195-2 pmid: 25848912 |
[25] |
Zhang Y, Liu H, Chen Z, et al. TLR4-mediated hippocampal MMP/TIMP imbalance contributes to the aggravation of perioperative neurocognitive disorder in db/db mice[J]. Neurochem Int, 2020, 140:104818-104819.
doi: 10.1016/j.neuint.2020.104818 URL |
[26] |
Jayashree K, Yasir M, Senthilkumar GP, et al. Circulating matrix modulators (MMP-9 and TIMP-1) and their association with severity of diabetic retinopathy[J]. Diabetes Metab Syndr., 2018: 12(6):869-873.
doi: S1871-4021(18)30153-X pmid: 29752166 |
[27] |
Lu L, Zhang Q, Pu LJ, et al. Dysregulation of matrix metalloproteinases and their tissue inhibitors is related to abnormality of left ventricular geometry and function in streptozotocin-induced diabetic minipigs[J]. Int J Experimental Pathol, 2010, 89(2):125-137.
doi: 10.1111/j.1365-2613.2008.00579.x URL |
[28] |
Everett LA, Paulus YM. Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema[J]. Curr Diab Rep, 2021, 21(9):35-46.
doi: 10.1007/s11892-021-01403-6 URL |
[29] |
Julius A, Hopper W. A non-invasive, multi-target approach to treat diabetic retinopathy[J]. Biomed Pharmacother, 2018, 109:708-715.
doi: 10.1016/j.biopha.2018.10.185 URL |
[30] |
Garcia C, Bartsch DU, Rivero ME, et al. Efficacy of Prinomastat (AG3340), a matrix metalloprotease inhibitor, in treatment of retinal neovascularization[J]. Curr Eye Res, 2002, 24(1):33-38.
doi: 10.1076/ceyr.24.1.33.5429 URL |
[31] |
Barnett JM, McCollum GW, Fowler JA, et al. Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR[J]. Invest Ophthalmol Vis Sci, 2007, 48(2):907-921.
doi: 10.1167/iovs.06-0082 URL |
[32] |
Bhatt LK, Addepalli V. Attenuation of diabetic retinopathy by enhanced inhibition of MMP-2 and MMP-9 using aspirin and minocycline in streptozotocin-diabetic rats[J]. Am J Transl Res, 2010, 2(2): 181-189.
pmid: 20407607 |
[33] |
Rahman F, Wushur I, Malla N, et al. Zinc-chelating compounds as inhibitors of human and bacterial zinc metalloproteases[J]. Molecules, 2021, 27(1):56-73.
doi: 10.3390/molecules27010056 URL |
[34] | Mohammad G, Siddiquei MM, Nawaz MI, et al. The ERK1/2 inhibitor U0126 attenuates diabetes-induced upregulation of MMP-9 and biomarkers of inflammation in the retina[J]. J Diabetes Res, 2013, 2013:658548-658556. |
[35] |
Mishra M, Kowluru RA. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy[J]. BBA-Mol Basis Dis, 2017, 1863(7):1761-1769.
doi: S0925-4439(17)30136-9 pmid: 28478229 |
[36] |
Olanlokun JO, Abiodun WO, Ebenezer O, et al. Curcumin modulates multiple cell death, matrix metalloproteinase activation and cardiac protein release in susceptible and resistant plasmodium berghei-infected mice[J]. Biomed Pharmacother, 2021, 146:112454-112468.
doi: 10.1016/j.biopha.2021.112454 pmid: 34894518 |
[37] |
Alparslan A, Sava K, Mukadder B. The effects of caffeic acid phenethyl ester on retina in a diabetic rat model[J]. Cutan Ocul Toxicol, 2021, 40(3):268-273.
doi: 10.1080/15569527.2021.1940196 URL |
[38] | 陈晶, 关晓海, 杨杉杉, 等. 青蒿琥酯对糖尿病大鼠视网膜MMP-9表达的影响[J]. 中草药, 2018, 49(5): 1106-1109. |
[39] |
Smit-Mcbride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics[J]. Ann of Transl Med, 2021, 9(5):1280-1296.
doi: 10.21037/atm-20-5189 URL |
[40] |
Pramanik S, Saha C, Chowdhury S, et al. Decreased levels of miR-126 and miR-132 in plasma and vitreous humor of non-proliferative diabetic retinopathy among subjects with type-2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2022, 15:345-358.
doi: 10.2147/DMSO.S346097 URL |
[41] |
Wang J, Zhang J, Chen X, et al. miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress[J]. Expl Eye Res, 2018, 168:89-99.
doi: 10.1016/j.exer.2017.11.006 URL |
[42] |
Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy[J]. J Clin Endocr Metab, 2020, 105(11):3404-3415.
doi: 10.1210/clinem/dgaa538 URL |
[43] | Xue L, Xiong C, Li J, et al. miR-200-3p suppresses cell proliferation and reduces apoptosis in diabetic retinopathy via blocking the TGF-β2/Smad pathway[J]. Bio scie Rep, 2020, 40(11):1-12. |
[44] | Kowluru RA, Santos JM, Mishra M. Epigenetic modifications and diabetic retinopathy[J]. Biomed Res Int, 2013, 2013:635284-635292. |
[45] |
Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy[J]. Lab Investig, 2016, 96(10):1040-1049.
doi: 10.1038/labinvest.2016.78 URL |
[46] |
Kowluru RA, Shan Y. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(5):955-962.
doi: 10.1007/s00417-017-3594-0 URL |
[47] |
Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: The role of DNA methylation[J]. Int J Mol Sci, 2020, 21(5):1771-1785.
doi: 10.3390/ijms21051771 URL |
[1] | 易静静, 圈启芳, 马婕. 调节小胶质细胞反应性:糖尿病视网膜病变新见解[J]. 临床荟萃, 2023, 38(4): 364-368. |
[2] | 王德生, 孙志刚, 马周鹏. 血清超敏C反应蛋白及尿mAlb/Cr与糖尿病视网膜病变的相关性[J]. 临床荟萃, 2022, 37(3): 253-256. |
[3] | 佟晶晶1,施克新2,冷飞2,李凤萍2. 血清胆红素水平与2型糖尿病视网膜病变的相关性[J]. 临床荟萃, 2020, 35(9): 816-822. |
[4] | 陆玉琴, 李应东, 刘凯. 血清MMP-1、MMP-3、TIMP1及同型半胱氨酸水平在高血压并发心房颤动患者中的作用[J]. 临床荟萃, 2020, 35(11): 976-979. |
[5] | 江旭,刘尚全. 3 404例2型糖尿病患者视网膜病变患病率及其相关因素分析[J]. 临床荟萃, 2020, 35(1): 54-58. |
[6] | 路阳,王瑞英,杜雅楠,张筱涵. 中国人群中血糖波动与2型糖尿病视网膜病变关系的meta分析[J]. 临床荟萃, 2020, 35(1): 13-20. |
[7] | 路阳,王瑞英,杜雅楠,张筱涵. 血糖波动与糖尿病视网膜病变关系的研究进展[J]. 临床荟萃, 2019, 34(11): 1046-1049. |
[8] | 陈璐;王龙;华飞;项守奎;徐茵;蒋晓红. 2型糖尿病患者血清胱抑素C与视网膜病变的关系[J]. 临床荟萃, 2015, 30(7): 796-798. |
[9] | 王超;张靖航;彭悦;王鹏华. 高甘油三酯血症腰围表型与2型糖尿病性视网膜病变的相关性[J]. 临床荟萃, 2015, 30(6): 657-659663. |
[10] | 刘敏;张勉之;朱玉霞;葛进;王丽敏. 血浆chemerin水平与增殖型糖尿病视网膜病变相关[J]. 临床荟萃, 2014, 29(2): 146-148. |
[11] | 邢邯英;王超;魏聪;张会欣. 通心络对糖尿病小鼠视网膜组织血管内皮生长因子及色素上皮衍生因子表达的影响[J]. 临床荟萃, 2014, 29(12): 1382-1.38414e+007. |
[12] | 倪雅楠;李强. 视黄醇结合蛋白4与2型糖尿病微血管病变的研究进展[J]. 临床荟萃, 2012, 27(9): 820-822. |
[13] | 李春生;郭金波;许云峰;田慧;魏娟;张国尊;刘蕾;房澍名;张晓岚. 丹参单体IH764-3对肝星状细胞胶原代谢的影响及其机制研究[J]. 临床荟萃, 2012, 27(17): 1502-1505. |
[14] | 梁丹;王战建. 视黄醇结合蛋白4与2型糖尿病视网膜病变的研究进展[J]. 临床荟萃, 2012, 27(15): 1370-1373. |
[15] | 刘亚;蒋延旺;许国华. 2型糖尿病视网膜病变与血超敏C反应蛋白和高同型半胱氨酸的关系[J]. 临床荟萃, 2012, 27(11): 967-968. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||