临床荟萃 ›› 2022, Vol. 37 ›› Issue (4): 379-384.doi: 10.3969/j.issn.1004-583X.2022.04.018
• 综述 • 上一篇
收稿日期:
2021-12-10
出版日期:
2022-04-20
发布日期:
2022-05-13
通讯作者:
陈水文
E-mail:csw319@163.com
Received:
2021-12-10
Online:
2022-04-20
Published:
2022-05-13
摘要:
流感嗜血杆菌是引起肺炎、脑膜炎、菌血症、会厌炎、结膜炎、鼻窦炎、蜂窝组织炎等疾病的主要致病菌之一。目前,不可分型流感嗜血杆菌已成为流感嗜血杆菌感染的主要亚型。随着生物膜概念的引入,流感嗜血杆菌致病机制的研究逐渐系统化。本文通过对不可分型流感嗜血杆菌生物膜的形成及其致病机制的研究现状进行综述,旨在为流感嗜血杆菌新型疫苗的研制、抗生素的使用、新型药物的研发提供理论支持。
中图分类号:
廖丁邦, 陈水文, 李镇清. 不可分型流感嗜血杆菌生物膜研究进展[J]. 临床荟萃, 2022, 37(4): 379-384.
NTHi独立致病因素 | 与人免疫系统的关系 |
---|---|
人补体抑制因子H | 补体激活替代途径的抑制剂,可以与Hi的外膜蛋白结合,减弱补体介导的对NTHi的杀伤作用[ |
外膜蛋白P4 | 是NTHi的玻连蛋白结合蛋白,可提高其在血清的存活率,提高了NTHi在人体中的存活率[ |
HMW和Hia蛋白 | 可以刺激抗体反应,与免疫应答的刺激有关[ |
IgA1P | 可以掩盖Hi荚膜多糖和其他表面抗原, 有助于逃避宿主的免疫反应。IgA1P的其他底物可以通过避免溶酶体降解来帮助细菌在上皮细胞中存活,可以通过抑制TNF-α的功能来逃避宿主免疫反应诱导的细胞凋亡[ |
LOS | 具有与人体鞘磷脂结构和抗原性相同的唾液酸末端,可以模拟宿主分子结构逃脱免疫细胞的吞噬和清除[ |
唾液酸 | 唾液酸Neu5Ac的掺入除了能提高对血清中抗体的抵抗力,还阻止了半乳糖在庚糖Ⅲ(heptose Ⅲ,Hep Ⅲ)上的识别,从而减少了IgM与细菌表面的结合[ |
PV | PV中基因oafA 表达是抵抗宿主免疫系统对补体介导的杀伤作用所必需的[ |
磷脂酰胆碱 | 在NTHi的LOS中存在的磷脂酰胆碱减少了肺上皮细胞释放IL-1b,从而抑制了炎症的发生,这可能在不触发免疫系统的情况下促进定植[ |
表1 NTHi独立致病因素与人免疫系统的关系
NTHi独立致病因素 | 与人免疫系统的关系 |
---|---|
人补体抑制因子H | 补体激活替代途径的抑制剂,可以与Hi的外膜蛋白结合,减弱补体介导的对NTHi的杀伤作用[ |
外膜蛋白P4 | 是NTHi的玻连蛋白结合蛋白,可提高其在血清的存活率,提高了NTHi在人体中的存活率[ |
HMW和Hia蛋白 | 可以刺激抗体反应,与免疫应答的刺激有关[ |
IgA1P | 可以掩盖Hi荚膜多糖和其他表面抗原, 有助于逃避宿主的免疫反应。IgA1P的其他底物可以通过避免溶酶体降解来帮助细菌在上皮细胞中存活,可以通过抑制TNF-α的功能来逃避宿主免疫反应诱导的细胞凋亡[ |
LOS | 具有与人体鞘磷脂结构和抗原性相同的唾液酸末端,可以模拟宿主分子结构逃脱免疫细胞的吞噬和清除[ |
唾液酸 | 唾液酸Neu5Ac的掺入除了能提高对血清中抗体的抵抗力,还阻止了半乳糖在庚糖Ⅲ(heptose Ⅲ,Hep Ⅲ)上的识别,从而减少了IgM与细菌表面的结合[ |
PV | PV中基因oafA 表达是抵抗宿主免疫系统对补体介导的杀伤作用所必需的[ |
磷脂酰胆碱 | 在NTHi的LOS中存在的磷脂酰胆碱减少了肺上皮细胞释放IL-1b,从而抑制了炎症的发生,这可能在不触发免疫系统的情况下促进定植[ |
[1] | Shimol SB, Dagan R. Haemophilus influenzae: Still a relevant invasive pathogen[J]. Isr Med Assoc J, 2012, 14(7): 432-434. |
[2] | Global Programme for Vaccines and Immunization (GPV). The WHO position paper on Haemophilus influenzae type b conjugate vaccines[J]. Wkly Epidemiol Rec, 1998, 73(10): 64-68. |
[3] | 田磊, 陈中举, 孙自镛. 生物Ⅰ型血清b型流感嗜血杆菌致化脓性关节炎1例[J]. 中国实验诊断学, 2019, 23(5): 900-902. |
[4] |
van Eldere J, Slack MP, Ladhani S. et al. Non-typeable Haemophilus influenzae, an under-recognised pathogen[J]. Lancet Infect Dis, 2014, 14(12): 1281-1292.
doi: 10.1016/S1473-3099(14)70734-0 pmid: 25012226 |
[5] |
Murphy TF, Faden H, Bakaletz LO. et al. Nontypeable Haemophilus influenzae as a pathogen in children[J]. Pediatr Infect Dis J, 2009, 28(1): 43-48.
doi: 10.1097/INF.0b013e318184dba2 URL |
[6] |
Sethi S, Evans N, Grant BJ. et al. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease[J]. N Engl J Med, 2002, 347(7): 465-471.
doi: 10.1056/NEJMoa012561 URL |
[7] |
Murphy TF, Brauer AL, Sethi S. et al. Haemophilus haemolyticus: A human respiratory tract commensal to be distinguished from Haemophilus influenzae[J]. J Infect Dis, 2007, 195(1): 81-89.
doi: 10.1086/509824 URL |
[8] |
Costerton JW, Geesey GG, Cheng KJ. How bacteria stick[J]. Sci Am, 1978, 238(1): 86-95.
pmid: 635520 |
[9] |
Donlan RM, Costerton JW. Biofilms: Survival mechanisms of clinically relevant microorganisms[J]. Clin Microbiol Rev, 2002, 15(2): 167-193.
doi: 10.1128/CMR.15.2.167-193.2002 URL |
[10] |
Flemming HC, Wingender J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9): 623-633.
doi: 10.1038/nrmicro2415 URL |
[11] |
Flemming HC, Baveye P, Neu TR. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond[J]. NPJ Biofilms Microbiomes, 2021, 7(1):10.
doi: 10.1038/s41522-020-00183-3 URL |
[12] |
Rocco CJ, Davey ME, Bakaletz LO. et al. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics[J]. Mol Oral Microbiol, 2017, 32(2): 118-130.
doi: 10.1111/omi.12157 pmid: 26988714 |
[13] |
Srivastava S, Bhargava A. Biofilms and human health[J]. Biotechnol Lett, 2016, 38(1): 1-22.
doi: 10.1007/s10529-015-1960-8 pmid: 26386834 |
[14] | Brockman KL, Azzari PN, Branstool MT. et al. Epigenetic regulation alters biofilm architecture and composition in multiple clinical isolates of nontypeable Haemophilus influenzae[J]. mBio, 2018, 9(5):e01682-e01800. |
[15] |
Secor PR, Michaels LA, Ratjen A. et al. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa[J]. Proc Natl Acad Sci U S A, 2018, 115(42): 10780-10785.
doi: 10.1073/pnas.1806005115 URL |
[16] |
Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms[J]. Materials (Basel), 2018, 11(12):2468.
doi: 10.3390/ma11122468 URL |
[17] | Watters C, Fleming D, Bishop D. et al. Host responses to biofilm[J]. Prog Mol Biol Transl Sci, 2016, 142:193-239. |
[18] |
Randal Bollinger R, Barbas AS, Bush EL. et al. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix[J]. J Theor Biol, 2007, 249(4): 826-831.
pmid: 17936308 |
[19] |
Langereis JD, Hermans PW. Novel concepts in nontypeable Haemophilus influenzae biofilm formation[J]. FEMS Microbiol Lett, 2013, 346(2): 81-89.
doi: 10.1111/1574-6968.12203 pmid: 23808954 |
[20] |
Mizrahi A, Cohen R, Varon E. et al. Non typable-Haemophilus influenzae biofilm formation and acute otitis media[J]. BMC Infect Dis, 2014, 14:400.
doi: 10.1186/1471-2334-14-400 pmid: 25037572 |
[21] |
Martinez-Resendez MF, Gonzalez-Chavez JM, Garza-Gonzalez E. et al. Non-typeable Haemophilus influenzae biofilm production and severity in lower respiratory tract infections in a tertiary hospital in Mexico[J]. J Med Microbiol, 2016, 65(12): 1385-1391.
doi: 10.1099/jmm.0.000369 URL |
[22] |
Baddal B. Characterization of biofilm formation and induction of apoptotic DNA fragmentation by nontypeable Haemophilus influenzae on polarized human airway epithelial cells[J]. Microb Pathog, 2020, 141:103985.
doi: 10.1016/j.micpath.2020.103985 URL |
[23] | Das J, Mokrzan E, Lakhani V. et al. Extracellular DNA and type Ⅳ pilus expression regulate the structure and kinetics of biofilm formation by nontypeable Haemophilus influenzae[J]. mBio, 2017, 8(6):e01466-e01700. |
[24] |
Devaraj A, Buzzo JR, Mashburn-Warren L. et al. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates[J]. Proc Natl Acad Sci U S A, 2019, 116(50): 25068-25077.
doi: 10.1073/pnas.1909017116 URL |
[25] |
Devaraj A, Buzzo J, Rocco CJ. et al. The DNABII family of proteins is comprised of the only nucleoid associated proteins required for nontypeable Haemophilus influenzae biofilm structure[J]. Microbiologyopen, 2018, 7(3): e00563.
doi: 10.1002/mbo3.563 URL |
[26] |
Jones EA, Mcgillivary G, Bakaletz LO. Extracellular DNA within a nontypeable Haemophilus influenzae-induced biofilm binds human beta defensin-3 and reduces its antimicrobial activity[J]. J Innate Immun, 2013, 5(1): 24-38.
doi: 10.1159/000339961 pmid: 22922323 |
[27] |
Wassing GM, Lidberg K, Sigurlasdottir S. et al. DNA blocks the lethal effect of human beta-defensin 2 against Neisseria meningitidis[J]. Front Microbiol, 2021, 12:697232.
doi: 10.3389/fmicb.2021.697232 URL |
[28] |
Brockman KL, Jurcisek JA, Atack JM. et al. ModA2 phasevarion switching in nontypeable Haemophilus influenzae increases the severity of experimental otitis media[J]. J Infect Dis, 2016, 214(5): 817-824.
doi: 10.1093/infdis/jiw243 pmid: 27288538 |
[29] |
Brockman KL, Branstool MT, Atack JM. et al. The ModA2 phasevarion of nontypeable Haemophilus influenzae regulates resistance to oxidative stress and killing by human neutrophils[J]. Sci Rep, 2017, 7(1):3161.
doi: 10.1038/s41598-017-03552-9 pmid: 28600561 |
[30] | Jackson MD, Wong SM, Akerley BJ. Underlying glycans determine the ability of sialylated lipooligosaccharide to protect nontypeable Haemophilus influenzae from serum IgM and complement[J]. Infect Immun, 2019, 87(11):e00456-e01900. |
[31] | Ng PSK, Day CJ, Atack JM. et al. Nontypeable Haemophilus influenzae has evolved preferential use of N-acetylneuraminic acid as a host adaptation[J]. mBio, 2019, 10(3):e00422-e01900. |
[32] |
Gallaher TK WuS, Webster P. et al. Identification of biofilm proteins in non-typeable Haemophilus influenzae[J]. BMC Microbiol, 2006, 6:65.
pmid: 16854240 |
[33] | Atack JM, Day CJ, Poole J. et al. The hontypeable Haemophilus influenzae major adhesin hia is a dual-function lectin that binds to human-specific respiratory tract sialic acid glycan receptors[J]. mBio, 2020, 11(6):e02714-20. |
[34] |
Maier B, Wong GCL. How bacteria use type Ⅳ pili machinery on surfaces[J]. Trends Microbiol, 2015, 23(12): 775-788.
doi: 10.1016/j.tim.2015.09.002 URL |
[35] |
Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili[J]. Res Microbiol, 2012, 163(9-10): 659-673.
doi: 10.1016/j.resmic.2012.10.015 URL |
[36] |
Piepenbrink KH. DNA uptake by type Ⅳ filaments[J]. Front Mol Biosci, 2019, 6:1.
doi: 10.3389/fmolb.2019.00001 pmid: 30805346 |
[37] |
Jacobsen T, Bardiaux B, Francetic O. et al. Structure and function of minor pilins of type Ⅳ pili[J]. Med Microbiol Immunol, 2020, 209(3): 301-308.
doi: 10.1007/s00430-019-00642-5 URL |
[38] | Pang B, Armbruster CE, Foster G. et al. Autoinducer 2 (AI-2) production by nontypeable Haemophilus influenzae 86-028NP promotes expression of a predicted glycosyltransferase that is a determinant of biofilm maturation, prevention of dispersal, and persistence in vivo[J]. Infect Immun, 2018, 86(12):e00506-e00518. |
[39] |
Wang W, Chanda W, Zhong M. The relationship between biofilm and outer membrane vesicles: A novel therapy overview[J]. FEMS Microbiol Lett, 2015, 362(15): fnv117.
doi: 10.1093/femsle/fnv117 URL |
[40] |
Choi DS, Kim DK, Kim YK. et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes[J]. Proteomics, 2013, 13(10-11): 1554-1571.
doi: 10.1002/pmic.201200329 URL |
[41] |
Mayr M, Grainger D, Mayr U. et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques[J]. Circ Cardiovasc Genet, 2009, 2(4): 379-388.
doi: 10.1161/CIRCGENETICS.108.842849 URL |
[42] |
Roier S, Zingl FG, Cakar F. et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria[J]. Nat Commun, 2016, 7:10515.
doi: 10.1038/ncomms10515 URL |
[43] |
Deknuydt F, Nordstrom T, Riesbeck K. Diversion of the host humoral response: A novel virulence mechanism of Haemophilus influenzae mediated via outer membrane vesicles[J]. J Leukoc Biol, 2014, 95(6): 983-991.
doi: 10.1189/jlb.1013527 URL |
[44] |
Paulsson M, Che KF, Ahl J. et al. Bacterial outer membrane vesicles induce vitronectin release into the bronchoalveolar space conferring protection from complement-mediated killing[J]. Front Microbiol, 2018, 9:1559.
doi: 10.3389/fmicb.2018.01559 pmid: 30061873 |
[45] |
Mirzaei R, Mohammadzadeh R, Sholeh M. et al. The importance of intracellular bacterial biofilm in infectious diseases[J]. Microb Pathog, 2020, 147:104393.
doi: 10.1016/j.micpath.2020.104393 URL |
[46] |
Hallstrom T, Zipfel PF, Blom AM. et al. Haemophilus influenzae interacts with the human complement inhibitor factor H[J]. J Immunol, 2008, 181(1): 537-545.
doi: 10.4049/jimmunol.181.1.537 URL |
[47] |
Ikeda M, Enomoto N, Hashimoto D. et al. Nontypeable Haemophilus influenzae exploits the interaction between protein-E and vitronectin for the adherence and invasion to bronchial epithelial cells[J]. BMC Microbiol, 2015, 15:263.
doi: 10.1186/s12866-015-0600-8 URL |
[48] |
Su YC, Mukherjee O, Singh B. et al. Haemophilus influenzae P4 interacts with extracellular matrix proteins promoting adhesion and serum resistance[J]. J Infect Dis, 2016, 213(2): 314-323.
doi: 10.1093/infdis/jiv374 URL |
[49] |
Rempe KA, Porsch EA, Wilson JM. et al. The HMW1 and HMW2 adhesins enhance the ability of nontypeable Haemophilus influenzae to colonize the upper respiratory tract of rhesus macaques[J]. Infect Immun, 2016, 84(10): 2771-2778.
doi: 10.1128/IAI.00153-16 URL |
[50] |
Shehaj L, Choudary SK, Makwana KM. et al. Small-molecule inhibitors of Haemophilus influenzae IgA1 protease[J]. ACS Infect Dis, 2019, 5(7): 1129-1138.
doi: 10.1021/acsinfecdis.9b00004 pmid: 31016966 |
[51] |
Kostyanev TS, Sechanova LP. Virulence factors and mechanisms of antibiotic resistance of haemophilus influenzae[J]. Folia Med (Plovdiv), 2012, 54(1): 19-23.
pmid: 22908826 |
[52] | Phillips ZN, Brizuela C, Jennison AV. et al. Analysis of invasive nontypeable Haemophilus influenzae isolates reveals selection for the expression state of particular phase-Variable lipooligosaccharide biosynthetic genes[J]. Infect Immun, 2019, 87(5):e00093-19. |
[53] |
Richter K, Koch C, Perniss A. et al. Phosphocholine-modified lipooligosaccharides of Haemophilus influenzae inhibit ATP-induced IL-1beta release by pulmonary epithelial cells[J]. Molecules, 2018, 23(8):1979.
doi: 10.3390/molecules23081979 URL |
[54] |
Slack M, Esposito S, Haas H. et al. Haemophilus influenzae type b disease in the era of conjugate vaccines: Critical factors for successful eradication[J]. Expert Rev Vaccines, 2020, 19(10):903-917.
doi: 10.1080/14760584.2020.1825948 URL |
[55] | Mackenzie GA, Ulanova M. Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use[J]. Clin Microbiol Rev, 2021, 34(3):e0002821. |
[56] |
Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases[J]. Acta Pharmacol Sin, 2018, 39(4): 514-533.
doi: 10.1038/aps.2017.82 URL |
[57] | Bailey MT, Lauber CL, Novotny LA. et al. Immunization with a biofilm-disrupting nontypeable Haemophilus influenzae vaccine antigen did not alter the gut microbiome in chinchillas, unlike oral delivery of a broad-spectrum antibiotic commonly used for otitis media[J]. mSphere, 2020, 5(2):e00296-e02000. |
[58] |
Langereis JD, de Jonge MI. Unraveling Haemophilus influenzae virulence mechanisms enable discovery of new targets for antimicrobials and vaccines[J]. Curr Opin Infect Dis, 2020, 33(3):231-237.
doi: 10.1097/QCO.0000000000000645 pmid: 32304471 |
[59] | 何萍, 丰涛, 徐俊, 等. 苏州地区2013-2018年肺炎住院患儿肺泡灌洗液的病原菌分布及耐药特征分析[J]. 临床荟萃, 2019, 34(9):809-813. |
[60] |
Mokrzan EM, Ahearn CP, Buzzo JR. et al. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct[J]. Biofilm, 2020, 2:100039.
doi: 10.1016/j.bioflm.2020.100039 URL |
[61] | 张溪, 弓磊. 抗菌肽抗菌机制及研究热点[J]. 中国组织工程研究, 2020, 24(10):1634-1640. |
[62] | 伍亚云, 黄勋. 噬菌体治疗细菌感染的研究进展[J]. 中国感染控制杂志, 2021, 20(2):186-190. |
[1] | 薛瑞瑞, 李向红, 李亮亮, 尹向云, 锡洪敏, 杨萍, 马丽丽. 优化抗生素管理对胎龄小于32周早产儿近期临床结局的影响[J]. 临床荟萃, 2023, 38(8): 706-713. |
[2] | 黄华艳, 林春光, 陈永东, 曾其毅, 吴昌儒. 新型冠状病毒Delta变异株感染同船海员的临床特点分析[J]. 临床荟萃, 2022, 37(4): 311-314. |
[3] | 王硕,张志华. 抗生素相关性腹泻病原菌的检测方法[J]. 临床荟萃, 2020, 35(4): 369-372. |
[4] | 陈炎添,郭翼华,苏雪棠. 新型冠状病毒病暴发流行的个人防控[J]. 临床荟萃, 2020, 35(2): 101-105. |
[5] | 倪玲a,周瑛a,陈蔚b,俞建华a,桂雪琼a,汪犀文a,陆中华a. 高龄住院患者抗菌药物使用和细菌耐药性分析[J]. 临床荟萃, 2018, 33(9): 796-799. |
[6] | 陈烨,王浦. 艰难梭菌感染的预防及疫苗研究进展[J]. 临床荟萃, 2018, 33(5): 390-393. |
[7] | 周文,李莉娟,王文媛,许丽丽,张连生. 急性髓系白血病中树突状细胞疫苗的免疫治疗[J]. 临床荟萃, 2017, 32(6): 549-552. |
[8] | 刘 洋,李莉娟,马愔花,刘树梅,张连生. 骨髓增生异常综合征中树突状细胞的免疫异常与免疫治疗------现状与前景[J]. 临床荟萃, 2016, 31(5): 573-576,580. |
[9] | 吴红霞;程德云;魏佳. 慢性阻塞性肺疾病的疾病负担及其影响因素[J]. 临床荟萃, 2015, 30(9): 1063-1066. |
[10] | 李晓岚;李晓军;柳肖;谢帆. 联合疫苗接种对反复呼吸道感染患儿细胞免疫功能的影响与疗效[J]. 临床荟萃, 2015, 30(4): 387-389. |
[11] | 郭嘉红;王文生;周敬华;闫东辉. 205株嗜麦芽窄食单胞菌的临床分布及耐药性分析[J]. 临床荟萃, 2015, 30(1): 60-63. |
[12] | 孔聪聪;何晨熙;王艳娇;刘改芳. 石家庄地区幽门螺杆菌临床分离株耐药性分析[J]. 临床荟萃, 2014, 29(7): 747-750. |
[13] | 曾水秀;杨方. 接种流脑疫苗致急性播散性脑脊髓炎1例[J]. 临床荟萃, 2014, 29(4): 454-456. |
[14] | 吕涛;沈武龙;李永春. 结核病生物标志物的临床应用及研究进展[J]. 临床荟萃, 2012, 27(5): 453-457. |
[15] | 孙蕊;刘倩芬;李凡;张晓倩;曾瑞红. 呼吸道合胞病毒疫苗及佐剂的研究进展[J]. 临床荟萃, 2012, 27(12): 1101-1104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||