[1] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition[J]. Diabetes Res Clin Pract, 2019, 157:107843.
doi: 10.1016/j.diabres.2019.107843
URL
|
[2] |
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1736-1788.
doi: S0140-6736(18)32203-7
pmid: 30496103
|
[3] |
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus[J]. Int J Mol Sci, 2020, 21(17):6275.
doi: 10.3390/ijms21176275
URL
|
[4] |
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus[J]. Nat Rev Dis Primers, 2015, 1:15019.
doi: 10.1038/nrdp.2015.19
pmid: 27189025
|
[5] |
Saklayen MG. The global epidemic of the metabolic syndrome[J]. Curr Hypertens Rep, 2018, 20(2):12.
doi: 10.1007/s11906-018-0812-z
pmid: 29480368
|
[6] |
García-Molina L, Lewis-Mikhael AM, Riquelme-Gallego B, et al. Improving type 2 diabetes mellitus glycaemic control through lifestyle modification implementing diet intervention: A systematic review and meta-analysis[J]. Eur J Nutr, 2020, 59(4):1313-1328.
doi: 10.1007/s00394-019-02147-6
pmid: 31781857
|
[7] |
Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study[J]. Lancet Diabetes Endocrinol, 2019, 7(6):452-461.
doi: 10.1016/S2213-8587(19)30093-2
URL
|
[8] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4):315-409.
|
[9] |
Heianza Y, Hara S, Arase Y, et al. HbA1c 5·7-6·4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): A longitudinal cohort study[J]. Lancet, 2011, 378(9786):147-155.
doi: 10.1016/S0140-6736(11)60472-8
pmid: 21705064
|
[10] |
Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease[J]. Curr Cardiol Rep, 2019, 21(4):21.
doi: 10.1007/s11886-019-1107-y
pmid: 30828746
|
[11] |
Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications[J]. Eur J Prev Cardiol, 2019, 26(2_suppl):25-32.
doi: 10.1177/2047487319878371
pmid: 31722562
|
[12] |
Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review[J]. Circulation, 2016, 133(2):187-225.
doi: 10.1161/CIRCULATIONAHA.115.018585
pmid: 26746178
|
[13] |
Gillies CL, Abrams KR, Lambert PC, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis[J]. BMJ, 2007, 334(7588):299.
doi: 10.1136/bmj.39063.689375.55
URL
|
[14] |
Gilis-Januszewska A, Lindström J, Tuomilehto J, et al. Sustained diabetes risk reduction after real life and primary health care setting implementation of the diabetes in Europe prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project[J]. BMC Public Health, 2017, 17(1):198.
doi: 10.1186/s12889-017-4104-3
pmid: 28202029
|
[15] |
Said S, Mukherjee D, Whayne TF. Interrelationships with metabolic syndrome, obesity and cardiovascular risk[J]. Curr Vasc Pharmacol, 2016, 14(5):415-425.
pmid: 27456105
|
[16] |
Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia[J]. Curr Opin Rheumatol, 2013, 25(2):210-216.
doi: 10.1097/BOR.0b013e32835d951e
pmid: 23370374
|
[17] |
Sesti G, Antonelli Incalzi R, Bonora E, et al. Management of diabetes in older adults[J]. Nutr Metab Cardiovasc Dis, 2018, 28(3):206-218.
doi: S0939-4753(17)30295-8
pmid: 29337017
|
[18] |
Jaacks LM, Vandevijvere S, Pan A, et al. The obesity transition: Stages of the global epidemic[J]. Lancet Diabetes Endocrinol, 2019, 7(3):231-240.
doi: 10.1016/S2213-8587(19)30026-9
URL
|
[19] |
Goossens GH. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function[J]. Obesity facts, 2017, 10(3):207-215.
doi: 10.1159/000471488
pmid: 28564650
|
[20] |
Gómez-Banoy N, Guseh JS, Li G, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans[J]. Nat Med, 2019, 25(11):1739-1747.
doi: 10.1038/s41591-019-0610-4
pmid: 31700183
|
[21] |
Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics[J]. Metabolism, 2019, 92:82-97.
doi: 10.1016/j.metabol.2018.11.014
URL
|
[22] |
Irace C, Tripolino C, Carallo C, et al. Clinical predictors of progressive beta-cell failure in type 2 diabetes[J]. J Investig Med, 2015, 63(6):802-805.
doi: 10.1097/JIM.0000000000000210
URL
|
[23] |
Taylor R. Type 2 diabetes: etiology and reversibility[J]. Diabetes Care, 2013, 36(4):1047-1055.
doi: 10.2337/dc12-1805
pmid: 23520370
|
[24] |
王尚才. 饮食结构与糖尿病发生发展的相关性研究[J]. 中国食物与营养, 2021, 27(2):68-71.
|
[25] |
Black MH, Watanabe RM, Trigo E, et al. High-fat diet is associated with obesity-mediated insulin resistance and β-cell dysfunction in Mexican Americans[J]. J Nutr, 2013, 143(4):479-485.
doi: 10.3945/jn.112.170449
pmid: 23343677
|
[26] |
Her TK, Lagakos WS, Brown MR, et al. Dietary carbohydrates modulate metabolic and β-cell adaptation to high-fat diet-induced obesity[J]. Am J Physiol Endocrinol Metab, 2020, 318(6):E856-e65.
doi: 10.1152/ajpendo.00539.2019
URL
|
[27] |
Lim EL, Hollingsworth KG, Aribisala BS, et al. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol[J]. Diabetologia, 2011, 54(10):2506-2514.
doi: 10.1007/s00125-011-2204-7
pmid: 21656330
|