临床荟萃 ›› 2023, Vol. 38 ›› Issue (4): 364-368.doi: 10.3969/j.issn.1004-583X.2023.04.014
收稿日期:
2022-10-31
出版日期:
2023-04-20
发布日期:
2023-06-06
通讯作者:
圈启芳
E-mail:Juanqifang@126.com
基金资助:
Received:
2022-10-31
Online:
2023-04-20
Published:
2023-06-06
摘要:
糖尿病视网膜病变(diabetic retinopathy,DR)是一种微血管疾病,同时也被认为是一种影响所有视网膜细胞的神经退行性病变。小胶质细胞是中枢神经系统的主要免疫细胞,同时作为视网膜的常驻单核细胞,其具有双重表型。在健康的视网膜中,小胶质细胞通过释放神经保护因子和抗炎因子参与防御性免疫系统。然而,持续的高血糖状态引起的组织应激使小胶质细胞过度反应,产生促炎细胞因子和趋化因子,导致神经炎症。因此,本文就DR相关的小胶质细胞的激活及其对DR的影响,讨论了调节小胶质细胞介导的炎症反应在治疗该疾病中的可能性。
中图分类号:
易静静, 圈启芳, 马婕. 调节小胶质细胞反应性:糖尿病视网膜病变新见解[J]. 临床荟萃, 2023, 38(4): 364-368.
[1] |
Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy[J]. Front Immunol, 2020, 11: 583687.
doi: 10.3389/fimmu.2020.583687 URL |
[2] |
Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4):942.
doi: 10.3390/ijms19040942 URL |
[3] |
Wu H, Wang M, Li X, et al. The metaflammatory and immunometabolic role of macrophages and microglia in diabetic retinopathy[J]. Hum Cell, 2021, 34(6): 1617-1628.
doi: 10.1007/s13577-021-00580-6 pmid: 34324139 |
[4] |
Karlstetter M, Ebert S, Langmann T. Microglia in the healthy and degenerating retina: Insights from novel mouse models[J]. Immunobiology, 2010, 215(9-10): 685-691.
doi: 10.1016/j.imbio.2010.05.010 pmid: 20573418 |
[5] |
Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: Just bystander or target for therapy[J]. Prog Retin Eye Res, 2015, 45: 30-57.
doi: 10.1016/j.preteyeres.2014.11.004 pmid: 25476242 |
[6] |
Lynch MA. The multifaceted profile of activated microglia[J]. Mol Neurobiol, 2009, 40(2): 139-156.
doi: 10.1007/s12035-009-8077-9 pmid: 19629762 |
[7] |
Bonham LW, Sirkis DW, Yokoyama JS. The transcriptional landscape of microglial genes in aging and neurodegenerative disease[J]. Front Immunol, 2019, 10: 1170.
doi: 10.3389/fimmu.2019.01170 pmid: 31214167 |
[8] |
Hammond TR, Dufort C, Dissing-Olesen L, et al. Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex Cell-State changes[J]. Immunity, 2019, 50(1): 253-271.
doi: S1074-7613(18)30485-0 pmid: 30471926 |
[9] |
O'Koren EG, Yu C, Klingeborn M, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration[J]. Immunity, 2019, 50(3): 723-737.
doi: S1074-7613(19)30073-1 pmid: 30850344 |
[10] |
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020, 11: 564077.
doi: 10.3389/fimmu.2020.564077 URL |
[11] |
Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed[J]. J Neuroinflammation, 2014, 11: 98.
doi: 10.1186/1742-2094-11-98 |
[12] |
Arroba AI, Alcalde-Estevez E, García-Ramírez M, et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice[J]. Biochim Biophys Acta, 2016, 1862(9): 1663-1674.
doi: 10.1016/j.bbadis.2016.05.024 pmid: 27267343 |
[13] | Cardona SM, Mendiola AS, Yang YC, et al. Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina[J]. ASN Neuro, 2015, 7(5):1759091415608204. |
[14] |
Boeck M, Thien A, Wolf J, et al. Temporospatial distribution and transcriptional profile of retinal microglia in the oxygen-induced retinopathy mouse model[J]. Glia, 2020, 68(9): 1859-1873.
doi: 10.1002/glia.23810 pmid: 32150307 |
[15] |
Xu W, Hu Z, Lv Y, et al. Microglial density determines the appearance of pathological neovascular tufts in oxygen-induced retinopathy[J]. Cell Tissue Res, 2018, 374(1): 25-38.
doi: 10.1007/s00441-018-2847-5 pmid: 29767277 |
[16] |
Hu Z, Mao X, Chen M, et al. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy[J]. Diabetes, 2022, 71(4): 762-773.
doi: 10.2337/db21-0551 pmid: 35061025 |
[17] |
Hsieh CF, Liu CK, Lee CT, et al. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation[J]. Sci Rep, 2019, 9(1):840.
doi: 10.1038/s41598-018-37215-0 |
[18] |
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes[J]. Free Radic Biol Med, 2011, 50(5): 567-575.
doi: 10.1016/j.freeradbiomed.2010.12.006 URL |
[19] |
Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy[J]. Exp Mol Pathol, 2003, 75(1): 95-108.
pmid: 12834631 |
[20] |
Dong N, Chang L, Wang B, et al. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-α expression in rat microglia via p38, ERK, and NF-κB pathways[J]. Mol Vis, 2014, 20: 616-628.
pmid: 24826069 |
[21] |
Zhang T, Ouyang H, Mei X, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibitng hyperglycemia-mediated ERK1/2-NF-κB signaling pathway[J]. FASEB J, 2019, 33(11): 11776-11790.
doi: 10.1096/fsb2.v33.11 URL |
[22] |
Yu Z, Zhang T, Gong C, et al. Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway[J]. Sci Rep, 2016, 6: 34306.
doi: 10.1038/srep34306 pmid: 27678303 |
[23] |
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[J]. Sci Transl Med, 2020, 12(555):eaay1371.
doi: 10.1126/scitranslmed.aay1371 URL |
[24] |
Yang LP, Sun HL, Wu LM, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2009, 50(5): 2319-2327.
doi: 10.1167/iovs.08-2642 URL |
[25] |
Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181-1194.
doi: 10.1007/s12035-014-9070-5 pmid: 25598354 |
[26] |
Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms[J]. Nat Neurosci, 2018, 21(6): 779-786.
doi: 10.1038/s41593-018-0145-x pmid: 29735982 |
[27] |
Chen T, Zhu W, Wang C, et al. ALKBH5-Mediated m6A modification of A20 regulates microglia polarization in diabetic retinopathy[J]. Front Immunol, 2022, 13: 813979.
doi: 10.3389/fimmu.2022.813979 URL |
[28] |
Xie H, Zhang C, Liu D, et al. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy[J]. Diabetologia, 2021, 64(1): 211-225.
doi: 10.1007/s00125-020-05299-x pmid: 33104828 |
[29] |
Jo DH, Yun JH, Cho CS, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy[J]. Glia, 2019, 67(2): 321-331.
doi: 10.1002/glia.23542 pmid: 30444022 |
[30] |
Kusari J, Zhou S, Padillo E, et al. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5152-5159.
doi: 10.1167/iovs.07-0427 URL |
[31] | Sohn EH, van Dijk HW, Jiao C, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus[J]. Proc Natl Acad Sci U S A, 2016, 113(19): E2655-2664. |
[32] |
Altmann C, Schmidt M. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1):110.
doi: 10.3390/ijms19010110 URL |
[33] |
Gu L, Xu H, Wang F, et al. Erythropoietin exerts a neuroprotective function against glutamate neurotoxicity in experimental diabetic retina[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 8208-8222.
doi: 10.1167/iovs.14-14435 URL |
[34] |
Haga A, Takahashi E, Inomata Y, et al. Differentiated expression patterns and phagocytic activities of type 1 and 2 microglia[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2814-2823.
doi: 10.1167/iovs.15-18509 URL |
[35] |
Serini S, Calviello G. Reduction of oxidative/nitrosative stress in brain and its involvement in the neuroprotective effect of n-3 PUFA in Alzheimer's Disease[J]. Curr Alzheimer Res, 2016, 13(2): 123-134.
pmid: 26391044 |
[36] |
Roche SL, Wyse-Jackson AC, Gómez-Vicente V, et al. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling[J]. PLoS One, 2016, 11(11): e0165197.
doi: 10.1371/journal.pone.0165197 URL |
[37] |
Al-Dosary DI, Alhomida AS, Ola MS. Protective effects of dietary flavonoids in diabetic induced retinal neurodegeneration[J]. Curr Drug Targets, 2017, 18(13): 1468-1476.
doi: 10.2174/1389450117666161003121304 pmid: 27697035 |
[38] |
Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy[J]. J Neuroinflammation, 2015, 12: 141.
doi: 10.1186/s12974-015-0368-7 URL |
[39] |
Scholz R, Sobotka M, Caramoy A, et al. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration[J]. J Neuroinflammation, 2015, 12: 209.
doi: 10.1186/s12974-015-0431-4 URL |
[40] |
Zhang J, Li L, Xiu F. Sesamin suppresses high glucose-induced microglial inflammation in the retina in vitro and in vivo[J]. J Neurophysiol, 2022, 127(2): 405-411.
doi: 10.1152/jn.00466.2021 pmid: 35020533 |
[41] |
Fang M, Wan W, Li Q, et al. Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-κB p65 mediated modulation of microglia polarization[J]. Life Sci, 2021, 277: 119567.
doi: 10.1016/j.lfs.2021.119567 URL |
[1] | 谢少为, 吕小涵, 董艳红, 吕佩源. 抗炎细胞因子在阿尔茨海默病中的研究进展[J]. 临床荟萃, 2023, 38(2): 185-188. |
[2] | 代菁, 陈华茜. 血液透析患者自发性肾破裂1例并文献复习[J]. 临床荟萃, 2023, 38(12): 1107-1111. |
[3] | 王思源, 王利, 温新然, 李小青. 新型冠状病毒感染后儿童多系统炎症综合征2例并文献复习[J]. 临床荟萃, 2023, 38(12): 1112-1116. |
[4] | 李志勇. 超声诊断短暂颈动脉周围炎症综合征1例并文献复习[J]. 临床荟萃, 2023, 38(11): 1027-1030. |
[5] | 张娟, 田茂露, 查艳. 维持性血液透析患者的微炎症状态与促红细胞生成素低反应性贫血[J]. 临床荟萃, 2023, 38(10): 949-953. |
[6] | 轩晓倩, 赵君慧, 杨小茜. 炎性指标在非小细胞肺癌患者预后中的临床意义[J]. 临床荟萃, 2022, 37(7): 663-667. |
[7] | 王杰, 陈宝昌, 黄嘉瑜, 孟金凤, 李尚彬, 闫伟宸, 赵倩, 李娇, 任常军. 新生儿脑损伤与围生期感染关联性的Meta分析[J]. 临床荟萃, 2022, 37(6): 497-503. |
[8] | 何洪真, 吕佩源. 调节性T细胞与缺血性脑卒中危险因素的相关性[J]. 临床荟萃, 2022, 37(4): 369-372. |
[9] | 王德生, 孙志刚, 马周鹏. 血清超敏C反应蛋白及尿mAlb/Cr与糖尿病视网膜病变的相关性[J]. 临床荟萃, 2022, 37(3): 253-256. |
[10] | 林长艺, 宋明辉, 吴培埕. 缓解性血清阴性对称性滑膜炎伴凹陷性水肿综合征与血清阴性类风湿性关节炎患者临床和实验室特征比较[J]. 临床荟萃, 2022, 37(3): 262-265. |
[11] | 杜菲, 李英. 老年糖尿病肾病患者肠道菌群失调的研究进展[J]. 临床荟萃, 2022, 37(2): 178-181. |
[12] | 朱素华, 徐圣秋. 基质金属蛋白酶抑制剂在糖尿病视网膜病变的研究进展[J]. 临床荟萃, 2022, 37(12): 1148-1152. |
[13] | 王文琦, 张涛. 司美格鲁肽对2型糖尿病合并冠心病患者心肌缺血总负荷及血清炎症因子的影响[J]. 临床荟萃, 2022, 37(11): 996-1000. |
[14] | 杨瑞, 刘宇宏. 类风湿关节炎患者血脂水平与心血管疾病风险相关研究进展[J]. 临床荟萃, 2022, 37(1): 92-96. |
[15] | 李丹, 花国辉. 脑脊液与血清降钙素原、 C-反应蛋白在中枢神经系统感染诊断中的应用价值[J]. 临床荟萃, 2021, 36(8): 704-707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||