临床荟萃 ›› 2024, Vol. 39 ›› Issue (5): 470-474.doi: 10.3969/j.issn.1004-583X.2024.05.015
收稿日期:
2023-12-10
出版日期:
2024-05-20
发布日期:
2024-07-05
通讯作者:
应可净,Email: 基金资助:
Received:
2023-12-10
Online:
2024-05-20
Published:
2024-07-05
摘要:
静脉血栓栓塞症(venous thromboembolism,VTE)属于血栓栓塞性疾病,发病率高,是气道慢性炎症性疾病的常见并发症之一。研究认为,免疫性血栓形成在气道慢性炎症性疾病并发VTE中起了重要作用。气道慢性炎症性疾病时,免疫细胞异常活化,多种凝血因子和炎症因子表达上调,血小板持续正反馈激活,血管内皮细胞功能异常,红细胞生成增多并发氧化应激,抗凝和纤溶系统抑制等,上述多种因素共同造成了气道慢性炎症性疾病患者的血管炎性微环境,导致静脉血栓形成。本文结合国内外的研究进展对气道慢性炎症性疾病并发VTE的流行病学及发生发展机制进行综述,旨在为临床提供参考。
中图分类号:
王娇燕, 严超, 应可净. 气道慢性炎症性疾病并发静脉血栓栓塞症的研究进展[J]. 临床荟萃, 2024, 39(5): 470-474.
[1] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组. 肺血栓栓塞症诊治与预防指南[J]. 中华医学杂志, 2018, 98(14): 1060-87. |
[2] | Khan F, Tritschler T, Kahn SR, et al. Venous thromboembolism[J]. The Lancet, 2021, 398(10294): 64-77. |
[3] |
Jordan Bruno X, Koh I, Lutsey PL, et al. Venous thrombosis risk during and after medical and surgical hospitalizations: The medical inpatient thrombosis and hemostasis (MITH) study[J]. J Thromb Haemost, 2022, 20(7): 1645-1652.
doi: 10.1111/jth.15729 pmid: 35426248 |
[4] | Duffett L. Deep venous thrombosis[J]. Ann Intern Med, 2022, 175(9): Itc129-itc44. |
[5] |
Stein PD, Matta F, Hughes MJ. In-hospital risks and management of deep venous thrombosis according to location of the thrombus[J]. Am J Med, 2021, 134(7): 877-881.
doi: 10.1016/j.amjmed.2020.11.013 pmid: 33316253 |
[6] | 中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021年修订版)[J]. 中华结核和呼吸杂志, 2021, 44(3): 170-205. |
[7] | Bertoletti L, Couturaud F, Sanchez O, et al. Pulmonary embolism and chronic obstructive pulmonary disease[J]. Semin Thromb Hemost, 2023, 49(8): 809-815. |
[8] |
Bertoletti L, Couturaud F. COPD is not only one of the several VTE risk factors[J]. Eur J Intern Med, 2021, 84: 14-15.
doi: 10.1016/j.ejim.2020.12.013 pmid: 33358534 |
[9] |
Børvik T, Brækkan SK, Enga K, et al. COPD and risk of venous thromboembolism and mortality in a general population[J]. Eur Respir J, 2016, 47(2): 473-481.
doi: 10.1183/13993003.00402-2015 pmid: 26585434 |
[10] | Han W, Wang M, Xie Y, et al. Prevalence of pulmonary embolism and deep venous thromboembolism in patients with acute exacerbation of chronic obstructive pulmonary disease: A systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 732855. |
[11] | Borvik T, Braekkan SK, Evensen LH, et al. Chronic obstructive pulmonary disease and risk of mortality in patients with venous thromboembolism-The tromso study[J]. Thromb Haemost, 2020, 120(3): 477-83. |
[12] | 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. |
[13] |
Alzghoul BN, Reddy R, Chizinga M, et al. Pulmonary embolism in acute asthma exacerbation: Clinical characteristics, prediction model and hospital outcomes[J]. Lung, 2020, 198(4): 661-669.
doi: 10.1007/s00408-020-00363-0 pmid: 32424799 |
[14] |
Majoor CJ, Kamphuisen PW, Zwinderman AH, et al. Risk of deep vein thrombosis and pulmonary embolism in asthma[J]. Eur Respir J, 2013, 42(3): 655-661.
doi: 10.1183/09031936.00150312 pmid: 23258790 |
[15] | Zoller B, Pirouzifard M, Memon AA, et al. Risk of pulmonary embolism and deep venous thrombosis in patients with asthma: A nationwide case-control study from Sweden[J]. Eur Respir J, 2017, 49(2):1601014. |
[16] |
Sun H, Liu M, Yang X, et al. Incidence and risk factors of venous thrombotic events in patients with interstitial lung disease during hospitalization[J]. Thromb J, 2023, 21(1): 17.
doi: 10.1186/s12959-023-00458-7 pmid: 36765371 |
[17] | Boonpheng B, Ungprasert P. Risk of venous thromboembolism in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis[J]. Sarcoidosis Vasc Diffuse Lung Dis, 2018, 35(2): 109-114. |
[18] | Danwang C, Bigna JJ, Awana AP, et al. Global epidemiology of venous thromboembolism in people with active tuberculosis: A systematic review and meta-analysis[J]. J Thromb Thrombolysis, 2021, 51(2): 502-512. |
[19] |
Cyr AR, Huckaby LV, Shiva SS, et al. Nitric oxide and endothelial dysfunction[J]. Crit Care Clin, 2020, 36(2): 307-321.
doi: S0749-0704(19)30104-6 pmid: 32172815 |
[20] | Cao YQ, Dong LX, Cao J. Pulmonary embolism in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Chin Med J (Engl), 2018, 131(14): 1732-1737. |
[21] |
Yong J, Toh CH. Rethinking coagulation: From enzymatic and cell-based reactions to a convergent model involving innate immune activation[J]. Blood, 2023, 142(25):2133-2145.
doi: 10.1182/blood.2023021166 pmid: 37890148 |
[22] |
Colling ME, Tourdot BE, Kanthi Y. Inflammation, infection and venous thromboembolism[J]. Circ Res, 2021, 128(12): 2017-2036.
doi: 10.1161/CIRCRESAHA.121.318225 pmid: 34110909 |
[23] | Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis[J]. J Clin Invest, 2020, 130(11): 6151-6157. |
[24] | Burmeister A, Vidal-Y-Sy S, Liu X, et al. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation[J]. Front Immunol, 2022, 13: 1078891. |
[25] |
Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: Insights into neutrophil extracellular trap (NET)-driven coagulation in infection[J]. Front Cardiovasc Med, 2019, 6: 85.
doi: 10.3389/fcvm.2019.00085 pmid: 31281822 |
[26] | Carminita E, Crescence L, Panicot-Dubois L, et al. Role of neutrophils and NETs in animal models of thrombosis[J]. Int J Mol Sci, 2022, 23(3):1411. |
[27] | Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis[J]. Front Immunol, 2022, 13: 953129. |
[28] |
Zirka G, Robert P, Tilburg J, et al. Impaired adhesion of neutrophils expressing Slc44a2/HNA-3b to VWF protects against NETosis under venous shear rates[J]. Blood, 2021, 137(16): 2256-2266.
doi: 10.1182/blood.2020008345 pmid: 33556175 |
[29] |
Tilburg J, Coenen DM, Zirka G, et al. SLC44A2 deficient mice have a reduced response in stenosis but not in hypercoagulability driven venous thrombosis[J]. J Thromb Haemost, 2020, 18(7): 1714-1727.
doi: 10.1111/jth.14835 pmid: 32297475 |
[30] | Thaler B, Hohensinner PJ, Baumgartner J, et al. Protease-activated receptors 1 and 3 are differentially expressed on human monocyte subsets and are upregulated by lipopolysaccharide ex vivo and in vivo[J]. Thromb Haemost, 2019, 119(9):1394-1402. |
[31] |
Wu C, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50(6): 1401-11.e4.
doi: S1074-7613(19)30183-9 pmid: 31076358 |
[32] |
Grover SP, Mackman N. Tissue factor: An essential mediator of hemostasis and trigger of thrombosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(4): 709-725.
doi: 10.1161/ATVBAHA.117.309846 pmid: 29437578 |
[33] |
Marx C, Novotny J, Salbeck D, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps[J]. Blood, 2019, 134(21): 1859-1872.
doi: 10.1182/blood.2019000518 pmid: 31481482 |
[34] | Hashimoto T, Ueki S, Kamide Y, et al. Increased circulating cell-free DNA in eosinophilic granulomatosis with polyangiitis: Implications for eosinophil extracellular traps and immunothrombosis[J]. Front Immunol, 2021, 12: 801897. |
[35] | Le J, Kulatheepan Y, Jeyaseelan S. Role of toll-like receptors and nod-like receptors in acute lung infection[J]. Front Immunol, 2023, 14: 1249098. |
[36] |
Ropert C. How toll-like receptors reveal monocyte plasticity: The cutting edge of antiinflammatory therapy[J]. Cell Mol Life Sci, 2019, 76(4): 745-755.
doi: 10.1007/s00018-018-2959-9 pmid: 30413835 |
[37] |
Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation[J]. Circ Res, 2016, 118(9): 1392-1408.
doi: 10.1161/CIRCRESAHA.116.306853 pmid: 27126649 |
[38] | Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, et al. Angiotensin II triggers release of neutrophil extracellular traps, linking thromboinflammation with essential hypertension[J]. JCI Insight, 2021, 6(18):e148668. |
[39] |
French SL, Butov KR, Allaeys I, et al. Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation[J]. Blood Adv, 2020, 4(13): 3011-3023.
doi: 10.1182/bloodadvances.2020001758 pmid: 32614966 |
[40] |
Leung HHL, Perdomo J, Ahmadi Z, et al. Inhibition of NADPH oxidase blocks NETosis and reduces thrombosis in heparin-induced thrombocytopenia[J]. Blood Adv, 2021, 5(23): 5439-5451.
doi: 10.1182/bloodadvances.2020003093 pmid: 34478504 |
[41] | Nolfi-Donegan D, Annarapu GK, St Croix C, et al. High-mobility group box 1 increases platelet surface P2Y12 and platelet activation in sickle cell disease[J]. JCI Insight, 2024, 9(5):e174575. |
[42] |
Yang J, Zhou X, Fan X, et al. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation[J]. Blood, 2016, 128(5): 615-624.
doi: 10.1182/blood-2015-10-672964 pmid: 27288518 |
[43] |
Vogel S, Arora T, Wang X, et al. The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase[J]. Blood Adv, 2018, 2(20): 2672-2680.
doi: 10.1182/bloodadvances.2018021709 pmid: 30333099 |
[44] | Mailer RKW, Hänel L, Allende M, et al. Polyphosphate as a target for interference with inflammation and thrombosis[J]. Front Med (Lausanne), 2019, 6: 76. |
[45] |
Dong H, Li H, Fang L, et al. Increased reactive oxygen species lead to overactivation of platelets in essential thrombocythemia[J]. Thromb Res, 2023, 226: 18-29.
doi: 10.1016/j.thromres.2023.04.001 pmid: 37087805 |
[46] | Vogel S, Murthy P, Cui X, et al. TLR4-dependent upregulation of the platelet NLRP3 inflammasome promotes platelet aggregation in a murine model of hindlimb ischemia[J]. Biochem Biophys Res Commun, 2019, 508(2): 614-619. |
[47] | Pilard M, Ollivier EL, Gourdou-Latyszenok V, et al. Endothelial cell phenotype, a major determinant of venous thrombo-inflammation[J]. Front Cardiovasc Med, 2022, 9: 864735. |
[48] | Zhuge Z, McCann Haworth S, Nihlén C, et al. Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I[J]. Redox Biol, 2023, 60: 102612. |
[49] | Stepien KM, Roncaroli F, Turton N, et al. Mechanisms of mitochondrial dysfunction in lysosomal storage disorders: A review[J]. J Clin Med, 2020, 9(8). |
[50] | Potere N, Abbate A, Kanthi Y, et al. Inflammasome signaling, thromboinflammation, and venous thromboembolism[J]. JACC Basic Transl Sci, 2023, 8(9): 1245-1261. |
[51] | Bettiol A, Galora S, Argento FR, et al. Erythrocyte oxidative stress and thrombosis[J]. Expert Rev Mol Med, 2022, 24: e31. |
[52] | Öhlinger T, Müllner E W, Fritz M, et al. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes[J]. Blood Cells Mol Dis, 2020, 83: 102426. |
[53] | Wang Q, Zennadi R. Oxidative stress and thrombosis during Aging: The roles of oxidative stress in RBCs in venous thrombosis[J]. Int J Mol Sci, 2020, 21(12):4259. |
[54] |
Zhao X, Cooper M, Michael JV, et al. GRK2 regulates ADP signaling in platelets via P2Y1 and P2Y12[J]. Blood Adv, 2022, 6(15): 4524-4536.
doi: 10.1182/bloodadvances.2022007007 pmid: 35793439 |
[55] | Won T, Wood MK, Hughes DM, et al. Endothelial thrombomodulin downregulation caused by hypoxia contributes to severe infiltration and coagulopathy in COVID-19 patient lungs[J]. EBioMedicine, 2022, 75: 103812. |
[1] | 陈诗雨, 罗专波. 肿瘤相关静脉血栓栓塞症研究进展[J]. 临床荟萃, 2024, 39(4): 363-369. |
[2] | 王先耀, 施荣杰, 龙均, 字颖. 膳食炎症指数在慢性疾病中的应用现状[J]. 临床荟萃, 2024, 39(3): 284-288. |
[3] | 张会, 丁东瑞, 金天然. 新型冠状病毒SARS-CoV-2的相关研究——过去与未来[J]. 临床荟萃, 2023, 38(7): 638-646. |
[4] | 周琪, 朱燕宾, 栗维宁, 李叔寒, 张秀果. 58例术前发生院内急性脑梗死的老年骨折患者流行病学特征[J]. 临床荟萃, 2023, 38(5): 438-443. |
[5] | 冷婉铜, 陶洁. 多发性骨髓瘤患者治疗后发生静脉血栓栓塞的危险因素[J]. 临床荟萃, 2023, 38(4): 340-345. |
[6] | 易静静, 圈启芳, 马婕. 调节小胶质细胞反应性:糖尿病视网膜病变新见解[J]. 临床荟萃, 2023, 38(4): 364-368. |
[7] | 张大炜, 李鑫, 孙贵凤. 2021年成都地区肺炎支原体感染流行病学分析[J]. 临床荟萃, 2023, 38(3): 237-240. |
[8] | 谢少为, 吕小涵, 董艳红, 吕佩源. 抗炎细胞因子在阿尔茨海默病中的研究进展[J]. 临床荟萃, 2023, 38(2): 185-188. |
[9] | 代菁, 陈华茜. 血液透析患者自发性肾破裂1例并文献复习[J]. 临床荟萃, 2023, 38(12): 1107-1111. |
[10] | 王思源, 王利, 温新然, 李小青. 新型冠状病毒感染后儿童多系统炎症综合征2例并文献复习[J]. 临床荟萃, 2023, 38(12): 1112-1116. |
[11] | 李志勇. 超声诊断短暂颈动脉周围炎症综合征1例并文献复习[J]. 临床荟萃, 2023, 38(11): 1027-1030. |
[12] | 张娟, 田茂露, 查艳. 维持性血液透析患者的微炎症状态与促红细胞生成素低反应性贫血[J]. 临床荟萃, 2023, 38(10): 949-953. |
[13] | 乔庆哲, 张新, 贺向红, 席素雅. 河北省涞源县40岁以上人群肺功能流行病学调查[J]. 临床荟萃, 2022, 37(7): 627-630. |
[14] | 轩晓倩, 赵君慧, 杨小茜. 炎性指标在非小细胞肺癌患者预后中的临床意义[J]. 临床荟萃, 2022, 37(7): 663-667. |
[15] | 王杰, 陈宝昌, 黄嘉瑜, 孟金凤, 李尚彬, 闫伟宸, 赵倩, 李娇, 任常军. 新生儿脑损伤与围生期感染关联性的Meta分析[J]. 临床荟萃, 2022, 37(6): 497-503. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||