临床荟萃 ›› 2021, Vol. 36 ›› Issue (5): 462-466.doi: 10.3969/j.issn.1004-583X.2021.05.015
收稿日期:
2021-01-04
出版日期:
2021-05-20
发布日期:
2021-06-09
通讯作者:
谷国强
E-mail:guguoqiang72@163.com
Received:
2021-01-04
Online:
2021-05-20
Published:
2021-06-09
摘要:
长链非编码RNA(long non-coding RNA, lncRNA)能够调控基因表达, 有望成为冠心病患者的治疗选择之一。并且大量研究证明lncRNA在冠心病及其亚型中发挥重要作用, lncRNA被认为是新的功能调控分子参与到动脉粥样硬化、冠心病、心肌梗死、心力衰竭、心绞痛和冠状动脉慢性完全闭塞等疾病的发生发展中。其中一些lncRNA还具有成为诊断标志物的潜力。本文旨在从lncRNA的生物学特点以及在冠心病进展中的分子机制进行综述。
中图分类号:
尹亮, 刘德敏, 谷国强. 长链非编码RNA与冠心病相关性研究进展[J]. 临床荟萃, 2021, 36(5): 462-466.
[1] |
Ebadi N, Ghafouri-Fard S, Taheri M, et al. Dysregulation of autophagy-related lncRNAs in peripheral blood of coronary artery disease patients[J]. Eur J Pharmacol, 2020, 867:172852.
doi: 10.1016/j.ejphar.2019.172852 URL |
[2] |
Cao Q, Guo Z, Yan Y, et al. Exosomal long noncoding RNAs in aging and age-related diseases[J]. IUBMB Life, 2019, 71(12):1846-1856.
doi: 10.1002/iub.v71.12 URL |
[3] |
Sallam T, Sandhu J, Tontonoz P. Long noncoding RNA discovery in cardiovascular disease: Decoding form to function[J]. Circ Res, 2018, 122(1):155-166.
doi: 10.1161/CIRCRESAHA.117.311802 pmid: 29301847 |
[4] |
Gong YP, Zhang YW, Su XQ, et al. Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway[J]. Biochem Cell Biol, 2020, 98(6):669-675.
doi: 10.1139/bcb-2019-0403 URL |
[5] |
Chen L, Hu L, Zhu X, et al. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis[J]. Cell Cycle, 2020, 19(19):2472-2485.
doi: 10.1080/15384101.2020.1807094 URL |
[6] |
Hu Y, Hu J. Diagnostic value of circulating lncRNA ANRIL and its correlation with coronary artery disease parameters[J]. Braz J Med Biol Res, 2019, 52(8):e8309.
doi: 10.1590/1414-431x20198309 URL |
[7] |
Liu X, Li S, Yang Y, et al. The lncRNA ANRIL regulates endothelial dysfunction by targeting the let-7b/TGF-βR1 signalling pathway[J]. J Cell Physiol, 2021, 236(3):2058-2069.
doi: 10.1002/jcp.v236.3 URL |
[8] | Wang M, Liu Y, Li C, et al. Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2[J]. Am J Transl Res, 2019, 11(3):1827-1834. |
[9] |
Zhang C, Yang H, Li Y, et al. LNCRNA OIP5-AS1 regulates oxidative low-density lipoprotein-mediated endothelial cell injury via miR-320a/LOX1 axis[J]. Mol Cell Biochem, 2020, 467(1-2):15-25.
doi: 10.1007/s11010-020-03688-9 URL |
[10] | Wu Z, He Y, Li D, et al. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21[J]. Am J Transl Res, 2017, 9(7):3326-3335. |
[11] |
Jarinova O, Stewart AF, Roberts R, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus[J]. Arterioscler Thromb Vasc Biol, 2009, 29(10):1671-1677.
doi: 10.1161/ATVBAHA.109.189522 pmid: 19592466 |
[12] |
Cho H, Li Y, Archacki S, et al. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease[J]. RNA Biol, 2020, 17(10):1391-1401.
doi: 10.1080/15476286.2020.1771519 URL |
[13] |
Zhang Z, Gao W, Long QQ, et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population[J]. Sci Rep, 2017, 7(1):7491.
doi: 10.1038/s41598-017-07611-z pmid: 28790415 |
[14] |
Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs[J]. Mol Cell, 2013, 52(1):101-112.
doi: 10.1016/j.molcel.2013.08.027 URL |
[15] | Kino T, Hurt DE, Ichijo T, et al. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor[J]. Sci Signal, 2010, 3(107): ra8. |
[16] | Li H, Liu Huang J, et al. Association of genetic variants in lncRNA GAS5/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population[J]. J Clin Lab Anal, 2020, 34(10):e23430. |
[17] | Chen J, Dang J. LncRNA CASC11 was downregulated in coronary artery disease and inhibits transforming growth factor-β1[J]. J Int Med Res, 2020, 48(3):300060519889187. |
[18] | Chen ZL, Chen YX, Zhou J, et al. LncRNA HULC alleviates HUVEC inflammation and improves angiogenesis after myocardial infarction through down-regulating miR-29b[J]. Eur Rev Med Pharmacol Sci, 2020, 24(11):6288-6298. |
[19] |
Li X, Dai Y, Yan S, et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction[J]. Biochem Biophys Res Commun, 2017, 491(4):1026-1033.
doi: 10.1016/j.bbrc.2017.08.005 URL |
[20] |
Liao B, Dong S, Xu Z, et al. LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1[J]. Life Sci, 2020, 256:117811.
doi: 10.1016/j.lfs.2020.117811 URL |
[21] | Lin B, Xu J, Wang F, et al. LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p[J]. Aging (Albany NY), 2020, 12(8):7232-7247. |
[22] |
Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction[J]. Circ Res, 2014, 115(7):668-677.
doi: 10.1161/CIRCRESAHA.115.303836 URL |
[23] | Ma R, He X, Zhu X, et al. Promoter polymorphisms in the lncRNA-MIAT gene associated with acute myocardial infarction in Chinese Han population: A case-control study[J]. Biosci Rep, 2020, 40(2): BSR20191203. |
[24] |
Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dysregulation in ischemic heart failure[J]. J Transl Med, 2016, 14(1):183.
doi: 10.1186/s12967-016-0926-5 URL |
[25] |
Ou Y, Liao C, Li H, et al. LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure[J]. IUBMB Life, 2020, 72(11):2469-2480.
doi: 10.1002/iub.v72.11 URL |
[26] | Sama RR, Ward CL, Bosco DA. Functions of FUS/TLS from DNA repair to stress response: Implications for ALS[J]. ASN Neuro, 2014, 6(4):1759091414544472. |
[27] |
Lai L, Xu Y, Kang L, et al. LncRNA KCNQ1OT1 contributes to cardiomyocyte apoptosis by targeting FUS in heart failure[J]. Exp Mol Pathol, 2020, 115:104480.
doi: 10.1016/j.yexmp.2020.104480 URL |
[28] | Li T, Qian D, Guoyan J, et al. Downregulated long noncoding RNA LUCAT1 inhibited proliferation and promoted apoptosis of cardiomyocyte via miR-612/HOXA13 pathway in chronic heart failure[J]. Eur Rev Med Pharmacol Sci, 2020, 24(1):385-395. |
[29] | Yin Y, Yang ZF, Li XH, et al. Knockdown of long non-coding RNA LUCAT1 reverses high glucose-induced cardiomyocyte injury via targeting CYP11B2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(19):8560-8565. |
[30] |
Deng H, Ouyang W, Zhang L, et al. LncRNA GASL1 is downregulated in chronic heart failure and regulates cardiomyocyte apoptosis[J]. Cell Mol Biol Lett, 2019, 24:41.
doi: 10.1186/s11658-019-0165-x URL |
[31] | 李香梅, 卡地尔·依米提, 宋宁, 等. 外周血长链非编码RNA ENST00000589524.1表达水平与稳定型心绞痛相关性研究[J]. 新疆医科大学学报, 2019, 42(6):711-714. |
[32] | 宋宁. 长链非编码RNA(ENST00000418539.1)在稳定性冠心病患者单核细胞中表达水平的研究[D]. 新疆医科大学, 2017. |
[33] |
Galassi AR, Werner GS, Boukhris M, et al. Percutaneous recanalisation of chronic total occlusions: 2019 consensus document from the EuroCTO Club[J]. EuroIntervention, 2019, 15(2):198-208.
doi: 10.4244/EIJ-D-18-00826 URL |
[34] |
Peng W, Feng J. Long noncoding RNA LUNAR1 associates with cell proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma[J]. Biomed Pharmacother, 2016, 77:65-71.
doi: 10.1016/j.biopha.2015.12.001 pmid: 26796267 |
[35] |
Lu W, Sheng Z, Zhang Z, et al. LncRNA-LUNAR1 levels are closely related to coronary collaterals in patients with chronic total coronary occlusion[J]. J Cardiovasc Transl Res, 2020, 13(2):171-180.
doi: 10.1007/s12265-019-09917-x URL |
[1] | 黄宇玲, 张欣悦, 荣萍萍, 杨文琦, 曹新营, 邢彩耐, 王志军, 刘宁. Non-HDL-C/HDL-C和NHR与冠状动脉病变严重程度的相关性[J]. 临床荟萃, 2024, 39(2): 115-120. |
[2] | 李华, 陈建军, 未纪涛, 张旗. 血清胱抑素C水平与非阻塞性冠状动脉疾病的关系[J]. 临床荟萃, 2023, 38(9): 802-805. |
[3] | 张粲那, 向露, 罗亚雄. 尖顶军盔征心电图改变1例并文献复习[J]. 临床荟萃, 2023, 38(5): 444-447. |
[4] | 闫海燕, 丁延魁, 郏红静, 王记远, 张学伟, 胡银杰, 楚骏杰, 胡红艳, 过高峰. 院前肝素化联合一包药与急性ST段抬高型心肌梗死患者血管再通的相关性[J]. 临床荟萃, 2023, 38(3): 232-236. |
[5] | 李娜娜, 江珊. 血清同型半胱氨酸、胱抑素C、超敏C-反应蛋白水平对急性ST段抬高型心肌梗死患者PCI术后并发心力衰竭的预测价值[J]. 临床荟萃, 2023, 38(2): 121-125. |
[6] | 王家琦, 王文静, 刘立天, 张飞飞, 党懿, 齐晓勇. 青年女性自发冠状动脉夹层导致急性心肌梗死1例并文献复习[J]. 临床荟萃, 2023, 38(2): 162-165. |
[7] | 王壮壮, 刘彦廷, 田春雷, 任欢, 艾文兵. 长链非编码RNA在胶质瘤中的研究进展[J]. 临床荟萃, 2023, 38(11): 1053-1056. |
[8] | 王雅洁, 李剑明, 刘菁晶, 卢宇杰, 林文华. 非阻塞性冠状动脉疾病女性患者冠状动脉血流储备异常的预测因素[J]. 临床荟萃, 2022, 37(9): 791-795. |
[9] | 朱卫健, 何颖, 黄慕芳, 付社竹, 王小琪, 李志新, 陈丽君, 李小亮. 沙利度胺治疗β-地中海贫血外周血miR-223-3p水平变化及临床价值[J]. 临床荟萃, 2022, 37(6): 515-518. |
[10] | 王家琦, 高曼, 张飞飞, 李英肖, 党懿, 齐晓勇. 中性粒细胞与淋巴细胞比值联合GRACE评分对急性STEMI患者PCI术后发生院内主要不良心血管事件的预测价值[J]. 临床荟萃, 2022, 37(5): 412-417. |
[11] | 吴天娇, 常璐, 李梓浩, 徐丹, 尹昌浩, 赵维纳. 微RNA在血管性认知障碍发病机制中的研究进展[J]. 临床荟萃, 2022, 37(4): 364-368. |
[12] | 王雅洁, 林文华, 敬锐, 刘菁晶, 卢宇杰. 急性非ST段抬高型心肌梗死患者血清同型半胱氨酸水平与SYNTAX评分的关系[J]. 临床荟萃, 2022, 37(4): 325-328. |
[13] | 胥英, 韩彩娟, 范弘, 孟泽蓉, 王小军, 刘华. 长链非编码RNA高表达与小细胞肺癌预后不良相关性的Meta分析[J]. 临床荟萃, 2021, 36(8): 685-690. |
[14] | 王亚柱, 郭云飞, 司月乔, 刘超, 张英. 心外膜脂肪组织体积与原发性高血压合并冠心病的相关性[J]. 临床荟萃, 2021, 36(8): 699-703. |
[15] | 陶嘉楠, 王学红, 张宏琳. miR-146b在恶性肿瘤中的研究进展[J]. 临床荟萃, 2021, 36(8): 765-768. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||