临床荟萃 ›› 2021, Vol. 36 ›› Issue (5): 476-480.doi: 10.3969/j.issn.1004-583X.2021.05.018
• 综述 • 上一篇
收稿日期:
2020-08-31
出版日期:
2021-05-20
发布日期:
2021-06-09
通讯作者:
张月辉
E-mail:zyh18096306699@169.com
Received:
2020-08-31
Online:
2021-05-20
Published:
2021-06-09
摘要:
帕金森病(Parkinson's disease, PD)是继阿尔茨海默病后第二大神经退行性疾病,该病随着年龄的增长患病率逐渐增高,目前对该病的诊断主要依靠典型的运动症状,但患者往往在出现典型症状后,疾病已经进展到中晚期,失去了对该病的早期治疗机会。随着多模态磁共振成像应用于PD,让大脑的结构和功能的变化可视化,使PD的早期诊断成为可能,并且为诊断疾病提供客观的依据,本文主要综述磁共振成像在PD早期诊断中的价值。
中图分类号:
但佳惠, 王相明, 张月辉. 磁共振成像对帕金森病诊断价值的研究进展[J]. 临床荟萃, 2021, 36(5): 476-480.
[1] | Ma C, Su L, Xie J, et al. The prevalence and incidence of Parkinson’s disease in China: A systematic review and meta-analysis[J]. J Neural Transm (Vienna), 2014, 121(2):123-134. |
[2] |
Adler CH, Beach TG, Hentz JG, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: Clinicopathologic study[J]. Neurology, 2014, 83(5):406-412.
doi: 10.1212/WNL.0000000000000641 URL |
[3] |
Rizzo G, Copetti M, Arcuti S, et al. Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis[J]. Neurology, 2016, 86(6):566-576.
doi: 10.1212/WNL.0000000000002350 URL |
[4] |
Salat D, Noyce AJ, Schrag A, et al. Challenges of modifying disease progression in prediagnostic Parkinson's disease[J]. Lancet Neurol, 2016, 15(6):637-648.
doi: 10.1016/S1474-4422(16)00060-0 URL |
[5] |
Kieburtz K. Treating neurodegenerative disease before illness: a challenge for the 21st century[J]. Lancet Neurol, 2016, 15(6):540-541.
doi: 10.1016/S1474-4422(16)30001-1 pmid: 27013350 |
[6] | Ranzenberger LR, Snyder T. Diffusion tensor imaging[M]. [Updated 2020 May 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2020. |
[7] |
Vaillancourt DE, Spraker MB, Prodoehl J, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease[J]. Neurology, 2009, 72(16):1378-1384.
doi: 10.1212/01.wnl.0000340982.01727.6e pmid: 19129507 |
[8] |
Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in parkinsonian syndromes: A systematic review and meta-analysis[J]. Neurology, 2013, 80(9):857-864.
doi: 10.1212/WNL.0b013e318284070c pmid: 23439701 |
[9] |
Deng XY, Wang L, Yang TT, et al. A meta-analysis of diffusion tensor imaging of substantia nigra in patients with Parkinson's disease[J]. Sci Rep, 2018, 8(1):2941.
doi: 10.1038/s41598-018-20076-y URL |
[10] |
Hirata FCC, Sato J R, Vieira G, et al. Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson's disease: A diagnostic performance study and meta-analysis[J]. Eur Radiol, 2017, 27(6):2640-2648.
doi: 10.1007/s00330-016-4611-0 URL |
[11] | Skorpil M, Söderlund V, Sundin A, et al. MRI diffusion in parkinson's disease: Using the technique's inherent directional information to study the olfactory bulb and substantia nigra[J]. J Parkinsons Dis, 2012, 2(2):171-180. |
[12] |
Langley J, Huddleston DE, Merritt M, et al. Diffusion tensor imaging of the substantia nigra in Parkinson's disease revisited[J]. Hum Brain Mapp, 2016, 37(7):2547-2556.
doi: 10.1002/hbm.23192 pmid: 27029026 |
[13] |
Du G, Lewis MM, Sen S, et al. Imaging nigral pathology and clinical progression in Parkinson's disease[J]. Mov Disord, 2012, 27(13):1636-1643.
doi: 10.1002/mds.25182 URL |
[14] |
Fearnley JM, Lees A J. Ageing and Parkinson's disease: Substantia nigra regional selectivity[J]. Brain, 1991, 114(Pt 5):2283-2301.
doi: 10.1093/brain/114.5.2283 URL |
[15] |
Rolheiser TM, Fulton HG, Good K P, et al. Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson's disease[J]. J Neurol, 2011, 258(7):1254-1260.
doi: 10.1007/s00415-011-5915-2 pmid: 21287185 |
[16] |
Joshi N, Rolheiser TM, Fisk JD, et al. Lateralized microstructural changes in early-stage Parkinson's disease in anterior olfactory structures, but not in substantia nigra[J]. J Neurol, 2017, 264(7):1497-1505.
doi: 10.1007/s00415-017-8555-3 pmid: 28653210 |
[17] |
Manova ES, Habib CA, Boikov AS, et al. Characterizing the mesencephalon using susceptibility-weighted imaging[J]. AJNR Am J Neuroradiol, 2009, 30(3):569-574.
doi: 10.3174/ajnr.A1401 URL |
[18] |
Wang Z, Luo XG, Gao C. Utility of susceptibility-weighted imaging in Parkinson's disease and atypical Parkinsonian disorders[J]. Transl Neurodegener, 2016, 5:17.
doi: 10.1186/s40035-016-0064-2 URL |
[19] | 郭方亮, 李涛. 帕金森病患者黑质的磁共振成像研究进展[J]. 卒中与神经疾病, 2017, 24(1):65-68. |
[20] |
Rossi M, Ruottinen H, Soimakallio S, et al. Clinical MRI for iron detection in Parkinson's disease[J]. Clin Imaging, 2013, 37(4):631-636.
doi: 10.1016/j.clinimag.2013.02.001 URL |
[21] |
Prange S, Metereau E, Thobois S, et al. Structural imaging in Parkinson's disease: New developments[J]. Curr Neurol Neurosci Rep, 2019, 19(8):50.
doi: 10.1007/s11910-019-0964-5 URL |
[22] | Schwarz ST, Afzal M, Morgan PS, et al. The ‘SwallowTail ’ appearance of the healthy nigrosome-A new accurate test of Parkinson's disease: A case-control and retrospective cross-sectional MRI study at 3T[J]. PLoS One, 2014, 9(4:e9814.[eCollection 2014] |
[23] |
Noh Y, Sung YH, Lee J, et al. Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic parkinson disease: Assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality[J]. AJNR Am J Neuroradiol, 2015, 36(11):2010-2016.
doi: 10.3174/ajnr.A4412 URL |
[24] |
Reiter E, Mueller C, Pinter B, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism[J]. Mov Disord, 2015, 30(8):1068-1076.
doi: 10.1002/mds.26171 URL |
[25] | 陈琪琪, 陈仪婷, 蒋震, 等. 帕金森病患者黑质小体-1影像特征的磁敏感加权成像评价及临床意义[J]. 中华神经科杂志, 2019, 52(8):620-624. |
[26] |
Mahlknecht P, Krismer F, Poewe W, et al. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease[J]. Mov Disord, 2017, 32(4):619-623.
doi: 10.1002/mds.26932 URL |
[27] |
Hellman NE, Gitlin JD. Geruloplasmin metabolism and function[J]. Ann Rev Nutr, 2002, 22(1):439-458.
doi: 10.1146/annurev.nutr.22.012502.114457 URL |
[28] |
Texel SJ, Xu X, Harris ZL. Ceruloplasmin in neurodegenerative diseases[J]. Biochem Soc Trans, 2008, 36(6):1277-1281.
doi: 10.1042/BST0361277 URL |
[29] |
Wang B, Wang X. Does ceruloplasmin defend against neurodegenerative diseases?[J]. Curr Neuropharmacol, 2019, 17(6):539-549.
doi: 10.2174/1570159X16666180508113025 pmid: 29737252 |
[30] |
Jin L, Wang J, Jin H, et al. Nigral iron deposition occurs across motor phenotypes of Parkinson’s disease[J]. Eur J Neurol, 2012, 19(7):969-976.
doi: 10.1111/j.1468-1331.2011.03658.x pmid: 22288465 |
[31] |
Jin L, Wang J, Zhao L, et al. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson's disease[J]. Brain, 2011, 134(Pt-1):50-58.
doi: 10.1093/brain/awq319 URL |
[32] | Zhao X, Shao Z, Zhang Y, et al. Ceruloplasmin in Parkinson's disease and the nonmotor symptoms[J]. Brain Behav, 2018, 8(6):e995.[Epub 2018 May 7] |
[33] | Wang Z, Luo XG, Gao C. Utility of susceptibility-weighted imaging in Parkinson's disease and atypical Parkinsonian disorders[J]. Transl Neurodegener, 2016, 5:17.[eCollection] |
[34] |
Bae YJ, Kim JM, Kim E, et al. Loss of nigral hyperintensity on 3 Tesla MRI of Parkinsonism: Comparison with 123I-FP-CIT SPECT[J]. Mov Disord, 2016, 31(5):684-692.
doi: 10.1002/mds.v31.5 URL |
[35] |
Wang N, Yang H, Li C, et al. Using ‘swallow-tail’ sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson's disease: A susceptibility-weighted imaging study[J]. Eur Radiol, 2017, 27(8):3174-3180.
doi: 10.1007/s00330-017-4743-x pmid: 28105503 |
[36] |
Boelmans K, Holst B, Hackius M, et al. Brain iron deposition fingerprints in Parkinson's disease and progressive supranuclear palsy[J]. Mov Disord, 2012, 27(3):421-427.
doi: 10.1002/mds.24926 URL |
[37] |
Du G, Liu T, Lewis MM, et al. Quantitative susceptibility mapping of the midbrain in Parkinson's disease[J]. Mov Disord, 2016, 31(3):317-324.
doi: 10.1002/mds.26417 URL |
[38] | Cheng Z, Zhang J, He N, et al. Radiomic features of the nigrosome-1 region of the substantia nigra: Using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson's disease[J]. Front Aging Neurosci, 2019, 11:167. [eCollection] |
[39] |
Xiao B, He N, Wang Q, et al. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease[J]. Neuroimage Clin, 2019, 24:102070.[Epub 2019 Nov 5]
doi: 10.1016/j.nicl.2019.102070 URL |
[40] |
Martin A, Pietracupa S, Piccini P. Neuromelanin in parkinsonian disorders: An update[J]. Int J Neurosci, 2017, 127(12):1116-1123.
doi: 10.1080/00207454.2017.1325883 pmid: 28460588 |
[41] |
Zecca L, Bellei C, Costi P, et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals[J]. Proc Natl Acad Sci USA, 2008, 105(45):17567-17572.
doi: 10.1073/pnas.0808768105 URL |
[42] | Fasano M, Bergamasco B, Lopiano L. Is neuromelanin changed in Parkinson's disease? Investigations by magnetic spectroscopies[J]. J Neural Transm(Vienna), 2006, 113(6):769-774. |
[43] |
Xing Y, Sapuan A, Dineen RA, et al. Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI[J]. Mov Disord, 2018, 33(11):1792-1799.
doi: 10.1002/mds.27502 URL |
[44] |
Matsuura K, Maeda M, Tabei K, et al. A longitudinal study of neuromelanin-sensitive magnetic resonance imaging in Parkinson's disease[J]. Neurosci Lett, 2016, 633:112-117.
doi: S0304-3940(16)30684-X pmid: 27619539 |
[45] |
Schwarz ST, Xing Y, Tomar P, et al. In vivo assessment of brainstem depigmentation in parkinson disease: Potential as a severity marker for multicenter studies[J]. Radiology, 2017, 283(3):789-798.
doi: 10.1148/radiol.2016160662 pmid: 27820685 |
[46] |
Schwarz ST, Rittman T, Gontu V, et al. T1-Weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson's disease[J]. Mov Disord, 2011, 26(9):1633-1638.
doi: 10.1002/mds.23722 URL |
[47] |
Castellanos G, Fernández MA, Lorenzo O, et al. Automated neuromelanin imaging as a diagnostic biomarker for Parkinson's disease[J]. Mov Disord, 2015, 30(7):945-952.
doi: 10.1002/mds.v30.7 URL |
[48] |
Chen X, Huddleston DE, Langley J, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach[J]. Magn Reson Imaging, 2014, 32(10):1301-1306.
doi: 10.1016/j.mri.2014.07.003 URL |
[49] |
Wang J, Li Y, Huang Z, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleusinde novo Parkinson's disease and its phenotypes[J]. Euro J Neurol, 2018, 25(7):949-973.
doi: 10.1111/ene.13628 URL |
[50] |
Ehrminger M, Latimier A, Pyatigorskaya N, et al. The coeruleus/ subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder[J]. Brain, 2016, 139(Pt 4):1180-1188.
doi: 10.1093/brain/aww006 pmid: 26920675 |
[51] |
Sommerauer M, Fedorova TD, Hansen AK, et al. Evaluation of the noradrenergic system in Parkinson's disease: An 11C-MeNER PET and neuromelanin MRI study[J]. Brain, 2018, 141(2):496-504.
doi: 10.1093/brain/awx348 pmid: 29272343 |
[52] |
Duguid JR, De La Paz R, De Groot J. Magnetic resonance imaging of the midbrain in Parkinson's disease[J]. Ann Neurol, 1986, 20(6):744-747.
pmid: 3813504 |
[53] | 马欣昕, 苏闻, 李淑华, 等. 帕金森病患者基底节核团体积的磁共振成像研究[J]. 中华神经科杂志, 2018, 51(3):165-170. |
[54] | Oikawa H, Sasaki M, Tamakawa Y, et al. The substantia nigra in Parkinson disease: Proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings[J]. AJNR Am J Neuroradiol, 2002, 23(10):1747-1756. |
[55] |
Pyatigorskaya N, Gallea C, Garcia-Lorenzo D, et al. A review of the use of magnetic resonance imaging in Parkinson's disease[J]. Ther Adv Neurol Disord, 2014, 7(4):206-220.
doi: 10.1177/1756285613511507 URL |
[56] |
Sohmiya M, Tanaka M, Aihara Y, et al. Structural changes in the midbrain with aging and Parkinson’s disease: An MRI study[J]. Neurobiol Aging, 2004, 25(4):449-453.
pmid: 15013565 |
[57] |
Geng DY, Li YX, Zee CS. Magnetic resonance imaging-based volumetric analysis of basal ganglia nuclei and substantia nigra in patients with Parkinson's disease[J]. Neurosurgery, 2006, 58(2):256-62; discussion 256-262.
doi: 10.1227/01.NEU.0000194845.19462.7B URL |
[1] | 王九雪, 李娜, 靳玮, 王硕, 常雅君, 王天俊. 帕金森病患者血清尿酸、同型半胱氨酸和胱抑素C水平与运动症状及认知功能的相关性[J]. 临床荟萃, 2024, 39(2): 125-129. |
[2] | 游琪琪, 霍丽娟. 原发性胆汁性胆管炎-自身免疫性肝炎重叠综合征的诊治进展[J]. 临床荟萃, 2024, 39(1): 84-87. |
[3] | 赵浩天, 李丽. 肺超声在心脏急重症疾病合并肺水肿中应用的研究进展[J]. 临床荟萃, 2023, 38(9): 832-837. |
[4] | 张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850. |
[5] | 周正新, 梁秋雄, 陈江瑛. 胰高血糖素样肽-1在帕金森病“肠-脑轴”中的作用研究进展[J]. 临床荟萃, 2023, 38(9): 855-858. |
[6] | 陈聪水, 李园, 陈淑芳. 重视儿童胆源性胰腺炎的中西医诊治(附1例分析)[J]. 临床荟萃, 2023, 38(8): 726-730. |
[7] | 李亚, 杜涛明, 邱世香, 陈超, 钟立明. 伴有抑郁症状肝癌患者脑功能连接研究[J]. 临床荟萃, 2023, 38(6): 532-536. |
[8] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[9] | 李蕾, 赵永超, 郑加香. 儿童Graves病的诊治新进展[J]. 临床荟萃, 2023, 38(5): 477-480. |
[10] | 黎恒楠, 黄艳, 赵亚娟, 胡桂才. 血清CTRP5与持续非卧床腹膜透析患者左室舒张功能异常的相关性及其诊断价值[J]. 临床荟萃, 2023, 38(4): 324-329. |
[11] | 柴春艳, 王婷. 老年高钙血症3例并文献复习[J]. 临床荟萃, 2023, 38(2): 166-169. |
[12] | 王璐璐, 董露露, 江超, 王九雪, 常雅君, 王天俊. 弥散张量成像评估帕金森病合并非运动症状患者脑微结构的研究进展[J]. 临床荟萃, 2023, 38(2): 189-192. |
[13] | 王军宏, 高振华, 章荣龙, 姬浩民, 赵信科, 达明绪. 1980-2021年胃癌诊断文献相关质量分析——基于Web of Science 数据库的文献计量学分析[J]. 临床荟萃, 2023, 38(12): 1117-1124. |
[14] | 刘晔, 阮桂仁, 刘晓清, 侍效春, 费贵军. 胰腺结核的诊断及鉴别诊断[J]. 临床荟萃, 2023, 38(10): 898-903. |
[15] | 杨文, 周泽平. 二代测序技术在血管性血友病诊断中的应用[J]. 临床荟萃, 2022, 37(9): 860-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||