临床荟萃 ›› 2021, Vol. 36 ›› Issue (5): 471-475.doi: 10.3969/j.issn.1004-583X.2021.05.017
收稿日期:
2020-09-23
出版日期:
2021-05-20
发布日期:
2021-06-09
通讯作者:
张惠莉
E-mail:Email: 810546233@qq.com
Received:
2020-09-23
Online:
2021-05-20
Published:
2021-06-09
摘要:
血糖监测贯穿于糖尿病治疗和疗效评估的全过程,为糖尿病管理的重要组成部分。近年来,随着连续血糖监测技术(CGM)的逐步应用,出现了很多评估血糖控制水平的新指标,血糖的目标范围时间(time in range, TIR)便是其中之一。TIR是指血糖水平在目标范围(通常为3.9~10.0 mmol/L)时间内的百分比,通常以TIR >70%为控制目标。在临床应用中,TIR不仅可以弥补传统血糖监测的不足,也为糖尿病患者个体化控糖提供了新的支持,而且可以预测糖尿病慢性并发症的风险。不过,当下广泛应用TIR作为评判血糖控制的主要手段仍存在一些障碍,需要进一步完善和发展。本文将围绕糖尿病患者TIR临床应用价值,对TIR的定义和范围、控制目标以及在糖尿病患者血糖管理中的定位等几方面进行综述,为个体化的血糖管理提供新思路。
中图分类号:
王艳, 张惠莉. 糖尿病患者TIR的临床应用价值研究进展[J]. 临床荟萃, 2021, 36(5): 471-475.
[1] |
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14):977-986.
doi: 10.1056/NEJM199309303291401 URL |
[2] | 中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2015年版)[J]. 中华糖尿病杂志, 2015, 7(10):603-613. |
[3] |
Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12):1631-1640.
doi: 10.2337/dc17-1600 URL |
[4] |
Runge AS, Kennedy L, Brown AS, et al. Does time-in-range matter perspectives from people with diabetes on the success of current therapies and the drivers of improved outcomes[J]. Clinical Diabetes, 2018, 36(2):112-119.
doi: 10.2337/cd17-0094 pmid: 29686449 |
[5] | 陈莉明. 技术引领科研,循证助力指南:血糖监测研究新进展[J]. 中华糖尿病杂志, 2020, 12(1):21-24. |
[6] |
Beck RW, Connor CG, Mullen DM, et al. The fallacy of average: How using HbA1c alone to assess glycemic control can be misleading[J]. Diabetes Care, 2017, 40(8):994-999.
doi: 10.2337/dc17-0636 pmid: 28733374 |
[7] |
Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8):1593-1603.
doi: 10.2337/dci19-0028 pmid: 31177185 |
[8] |
Beyond A1C Writing Group. Need for regulatory change to incorporate beyond A1C glycemic metrics[J]. Diabetes Care, 2018, 41(6):e92-e94.
doi: 10.2337/dci18-0010 URL |
[9] |
Agiostratidou G, Anhalt H, Ball D, et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: A consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange[J]. Diabetes Care, 2017, 40(12):1622-1630.
doi: 10.2337/dc17-1624 pmid: 29162582 |
[10] |
Rhee MK, Ho YL, Raghavan S, et al. Random plasma glucose predicts the diagnosis of diabetes[J]. PLoS One, 2019, 14(7):e0219964.
doi: 10.1371/journal.pone.0219964 URL |
[11] |
International Hypoglycaemia Study Group. Glucose concentrations of less than 3.0 mmol/l (54 mg/dl) should be reported in clinical trials: A joint position statement of the American diabetes association and the european association for the study of diabetes[J]. Diabetologia, 2017, 60(1):3-6.
doi: 10.1007/s00125-016-4146-6 URL |
[12] |
American Diabetes Association.14. Management of diabetes in pregnancy: Standards of medical care in diabetes-2019[J]. Diabetes Care, 2019, 42(Suppl 1):S165-S172.
doi: 10.2337/dc19-S014 URL |
[13] |
Feig DS, Donovan LE, Corcoy R, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial[J]. Lancet, 2017, 390(10110):2347-2359.
doi: 10.1016/S0140-6736(17)32400-5 URL |
[14] |
Kristensen K, Ogge LE, Sengpiel V, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes: An observational cohort study of 186 pregnancies[J]. Diabetologia, 2019, 62(7):1143-1153.
doi: 10.1007/s00125-019-4850-0 pmid: 30904938 |
[15] |
Kovatchev BP. Metrics for glycaemic control - from HbA1c to continuous glucose monitoring[J]. Nat Rev Endocrinol, 2017, 13(7):425-436.
doi: 10.1038/nrendo.2017.3 pmid: 28304392 |
[16] |
Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes[J]. Diabetes Technol Ther, 2019, 21(2):81-85.
doi: 10.1089/dia.2018.0310 URL |
[17] |
Hirsch IB, Welsh JB, Calhoun P, et al. Associations between HbA1c and continuous glucose monitoring-derived glycaemic variables[J]. Diabet Med, 2019, 36(12):1637-1642.
doi: 10.1111/dme.v36.12 URL |
[18] |
Cryer PE. Glycemic goals in diabetes: Trade-off between glycemic control and iatrogenic hypoglycemia[J]. Diabetes, 2014, 63(7):2188-2195.
doi: 10.2337/db14-0059 URL |
[19] |
Bergenstal RM. Glycemic variability and diabetes complications: Does it matter Simply put, there are better glycemic markers![J] Diabetes Care, 2015, 38(8):1615-1621.
doi: 10.2337/dc15-0099 pmid: 26207055 |
[20] |
Rodbard D. Display of glucose distributions by date, time of day, and day of week: New and improved methods[J]. J Diabetes Sci Technol, 2009, 3(6):1388-1394.
pmid: 20144393 |
[21] |
Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes[J]. Diabetes Care, 2018, 41(11) :2370-2376.
doi: 10.2337/dc18-1131 URL |
[22] |
Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials[J]. Diabetes Care, 2019, 42(3):400-405.
doi: 10.2337/dc18-1444 pmid: 30352896 |
[23] |
Mayeda L, Katz R, Ahmad I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease[J]. BMJ Open Diabetes Res Care, 2020, 8(1):e000991.
doi: 10.1136/bmjdrc-2019-000991 URL |
[24] |
Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c[J]. J Diabetes Sci Technol, 2019, 13(4):614-626.
doi: 10.1177/1932296818822496 pmid: 30636519 |
[25] |
Murphy HR. Continuous glucose monitoring targets in type 1 diabetes pregnancy: Every 5% time in range matters[J]. Diabetologia, 2019, 62(7):1123-1128.
doi: 10.1007/s00125-019-4904-3 pmid: 31161344 |
[26] |
Vos FE, Schollum JB, Coulter CV, et al. Assessment of markers of glycaemic control in diabetic patients with chronic kidney disease using continuous glucose monitoring[J]. Nephrology (Carlton), 2012, 17(2):182-188.
doi: 10.1111/nep.2012.17.issue-2 URL |
[27] |
Bergenstal RM, Gal RL, Connor CG, et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels[J]. Ann Intern Med, 2017, 167(2):95-102.
doi: 10.7326/M16-2596 pmid: 28605777 |
[28] |
Cohen RM, Franco RS, Smith EP, et al. When HbA1c and blood glucose do not match: How much is determined by race, by genetics, by differences in mean red blood cell age?[J]. J Clin Endocrinol Metab, 2019, 104(3):707-710.
doi: 10.1210/jc.2018-02409 URL |
[29] |
Brahimi N, Potier L, Mohammedi K. Cutaneous adverse events related to FreeStyle Libre device[J]. Lancet, 2017, 389(10077):1396.
doi: 10.1016/S0140-6736(17)30896-6 |
[30] |
Herman A, Aerts O, Baeck M, et al. Allergic contact dermatitis caused by isobornyl acrylate in Freestyle(R) Libre, a newly introduced glucose sensor[J]. Contact Dermatitis, 2017, 77(6):367-373.
doi: 10.1111/cod.12866 pmid: 28804907 |
[31] |
Tanenbaum ML, Hanes SJ, Miller KM, et al. Diabetes device use in adults with type 1 diabetes: Barriers to uptake and potential intervention targets[J]. Diabetes Care, 2017, 40(2):181-187.
doi: 10.2337/dc16-1536 pmid: 27899489 |
[32] |
Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: Meta-analysis of randomised controlled trials using individual patient data[J]. BMJ, 2011, 343:d3805.
doi: 10.1136/bmj.d3805 URL |
[33] |
Vigersky RA, Shin J, Jiang B, et al. The comprehensive glucose pentagon: A glucose-centric composite metric for assessing glycemic control in persons with diabetes[J]. J Diabetes Sci Technol, 2018, 12(1):114-123.
doi: 10.1177/1932296817718561 pmid: 28748705 |
[34] |
Hempe JM, Liu S, Myers L, et al. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial[J]. Diabetes Care, 2015, 38(6):1067-1074.
doi: 10.2337/dc14-1844 URL |
[35] |
Peyser TA, Balo AK, Buckingham BA, et al. Glycemic variability percentage: A novel method for assessing glycemic variability from continuous glucose monitor data[J]. Diabetes Technol Ther, 2018, 20(1):6-16.
doi: 10.1089/dia.2017.0187 URL |
[36] |
Rodbard D. Metrics to evaluate quality of glycemic control: Comparison of time in target, hypoglycemic, and hyperglycemic ranges with “risk indices”[J]. Diabetes Technol Ther, 2018, 20(5):325-334.
doi: 10.1089/dia.2017.0416 URL |
[1] | 吕莎莎, 宋金兰, 石健. m.3243A>G突变相关线粒体糖尿病1例并文献复习[J]. 临床荟萃, 2024, 39(2): 160-163. |
[2] | 张佳楠, 孙琳琳, 詹潇燕, 李冰. 血清维生素B12与老年2型糖尿病轻度认知功能障碍的关系[J]. 临床荟萃, 2024, 39(1): 34-37. |
[3] | 位增, 曹灵, 佘敦敏, 刘彦, 王艳, 张真稳. 54例2型糖尿病患者合并新型冠状病毒感染的死亡原因分析[J]. 临床荟萃, 2023, 38(9): 806-812. |
[4] | 张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850. |
[5] | 杨鑫, 许华娇. 基于Web of Science糖尿病患者心理干预研究的文献计量学分析[J]. 临床荟萃, 2023, 38(8): 731-736. |
[6] | 马光宇, 罗慧娟, 王冬菊, 肖小敏. 黄芩苷治疗糖尿病及其并发症的研究进展[J]. 临床荟萃, 2023, 38(8): 757-762. |
[7] | 张欣欣, 刘国庆, 王蓓蓓. 糖尿病酮症酸中毒引起极度血小板增多症1例并文献复习[J]. 临床荟萃, 2023, 38(8): 719-721. |
[8] | 金家辉, 杨阳, 秦铜, 何雨欣, 苏美华. 补充益生菌对2型糖尿病患者糖代谢改善的meta分析[J]. 临床荟萃, 2023, 38(7): 581-587. |
[9] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[10] | 陈婷, 刘金彦. 中药靶向PI3K/Akt/mTOR通路调节自噬在糖尿病肾脏病中的研究进展[J]. 临床荟萃, 2023, 38(6): 564-568. |
[11] | 苏晨蓓, 王富军. 糖尿病下肢动脉疾病介入治疗疗效的研究进展[J]. 临床荟萃, 2023, 38(6): 569-572. |
[12] | 吴亚楠, 延天美, 梁鹏, 魏立民. 中老年糖尿病患者抑郁症状的高危识别[J]. 临床荟萃, 2023, 38(6): 516-520. |
[13] | 吕丽丽, 翟满满, 丁小艳, 陈永清. 线粒体转录因子A介导的线粒体功能障碍在糖尿病心肌病中的作用[J]. 临床荟萃, 2023, 38(5): 465-468. |
[14] | 易静静, 圈启芳, 马婕. 调节小胶质细胞反应性:糖尿病视网膜病变新见解[J]. 临床荟萃, 2023, 38(4): 364-368. |
[15] | 杨旻星, 孙璐, 叶赟, 徐文东, 黄小琳, 张海云, 徐英蕾. 中青年2型糖尿病合并阻塞性睡眠呼吸暂停低通气综合征患者认知功能特点及其影响因素[J]. 临床荟萃, 2023, 38(3): 216-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||