临床荟萃 ›› 2022, Vol. 37 ›› Issue (2): 170-173.doi: 10.3969/j.issn.1004-583X.2022.02.015
收稿日期:
2021-10-11
出版日期:
2022-02-20
发布日期:
2022-03-04
通讯作者:
王德峰
E-mail:wdf991217@126.com
基金资助:
Received:
2021-10-11
Online:
2022-02-20
Published:
2022-03-04
摘要:
钠-葡萄糖协同转运蛋白2抑制剂(sodiumglucose cotransporter 2 inhibitors, SGLT2i)是一种新型非胰岛素依赖型口服降糖药,通过抑制肾脏对葡萄糖的重吸收,促进尿糖排泄,从而发挥降低血糖的作用。除降低血糖外,还可降低体重、血压和血尿酸,并显示出独立于血糖控制之外的心脏和肾脏保护特性。恩格列净是目前选择性最高的SGLT2i,具有良好的安全性和耐受性,单一用药时低血糖发生风险低,与截肢或骨折风险的增加无关,不良事件多为泌尿生殖器感染。本文就其治疗2型糖尿病(type 2 diabetes mellitus,T2DM)的作用机制、临床疗效、安全性等方面进行综述,旨在为临床提供依据。
中图分类号:
邱建美, 王德峰. 恩格列净治疗2型糖尿病的研究现状[J]. 临床荟萃, 2022, 37(2): 170-173.
安慰剂(n=4 904) | 恩格列净10/25 mg (n=10 177) | ||||
---|---|---|---|---|---|
例(%) | 率/ 100人年 | 例(%) | 率/ 100人年 | ||
尿路感染(BIcMQ) | 691(14.1) | 9.7 | 1 382(13.6) | 9.27 | |
生殖道感染(BIcMQ) | 75(1.5) | 0.95 | 565(5.6) | 3.54 | |
低血糖(狭义SMQ) | 1 045(21.3) | 16.32 | 2 067(20.3) | 15.69 | |
确认低血糖不良事件 | 987(20.1) | - | 1 948(19.1) | - | |
基线使用胰岛素和(或) 磺脲类后确认的低血糖a | 915(30.2) | 20.36 | 1 833(31.5) | 20.88 | |
DKA(狭义BIcMQ) | 4(0.1) | 0.05 | 6(0.1) | 0.04 | |
尿路致癌性b(BIcMQ) | 9(0.2) | 0.11 | 23(0.2) | 0.14 | |
肝损伤(SMQ) | 157(3.2) | 2.02 | 247(2.4) | 1.51 | |
骨折(BIcMQ) | 134(2.7) | 1.72 | 233(2.3) | 1.42 | |
胰腺炎(SMQ) | 11(0.2) | 0.14 | 15(0.1) | 0.09 | |
截肢风险(ITT 人群) | 46(0.9) | 0.52 | 95(0.9) | 0.52 | |
轻微 | 27(0.6) | 0.30 | 76(0.8) | 0.41 | |
严重 | 19(0.4) | 0.21 | 19(0.2) | 0.10 | |
肾损害 | 169(3.4) | 2.18 | 291(2.9) | 1.78 | |
急性肾损伤c | 44(0.9) | 0.56 | 57(0.6) | 0.34 |
表1 重要识别风险的频率和发生率[34]
安慰剂(n=4 904) | 恩格列净10/25 mg (n=10 177) | ||||
---|---|---|---|---|---|
例(%) | 率/ 100人年 | 例(%) | 率/ 100人年 | ||
尿路感染(BIcMQ) | 691(14.1) | 9.7 | 1 382(13.6) | 9.27 | |
生殖道感染(BIcMQ) | 75(1.5) | 0.95 | 565(5.6) | 3.54 | |
低血糖(狭义SMQ) | 1 045(21.3) | 16.32 | 2 067(20.3) | 15.69 | |
确认低血糖不良事件 | 987(20.1) | - | 1 948(19.1) | - | |
基线使用胰岛素和(或) 磺脲类后确认的低血糖a | 915(30.2) | 20.36 | 1 833(31.5) | 20.88 | |
DKA(狭义BIcMQ) | 4(0.1) | 0.05 | 6(0.1) | 0.04 | |
尿路致癌性b(BIcMQ) | 9(0.2) | 0.11 | 23(0.2) | 0.14 | |
肝损伤(SMQ) | 157(3.2) | 2.02 | 247(2.4) | 1.51 | |
骨折(BIcMQ) | 134(2.7) | 1.72 | 233(2.3) | 1.42 | |
胰腺炎(SMQ) | 11(0.2) | 0.14 | 15(0.1) | 0.09 | |
截肢风险(ITT 人群) | 46(0.9) | 0.52 | 95(0.9) | 0.52 | |
轻微 | 27(0.6) | 0.30 | 76(0.8) | 0.41 | |
严重 | 19(0.4) | 0.21 | 19(0.2) | 0.10 | |
肾损害 | 169(3.4) | 2.18 | 291(2.9) | 1.78 | |
急性肾损伤c | 44(0.9) | 0.56 | 57(0.6) | 0.34 |
[1] |
Scheen AJ. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2020,16(10):556-577.
doi: 10.1038/s41574-020-0392-2 pmid: 32855502 |
[2] |
Nagahisa T, Saisho Y. Cardiorenal protection: Potential of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes[J]. Diabetes Ther, 2019,10(5):1733-1752.
doi: 10.1007/s13300-019-00680-5 pmid: 31440988 |
[3] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med, 2015,373(22):2117-2128.
doi: 10.1056/NEJMoa1504720 URL |
[4] |
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019,380(4):347-357.
doi: 10.1056/NEJMoa1812389 URL |
[5] |
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019,380(24):2295-2306.
doi: 10.1056/NEJMoa1811744 URL |
[6] |
Fadini GP, Solini A, Manca ML, et al. Effectiveness of dapagliflozin versus comparators on renal endpoints in the real world:A multicentre retrospective study[J]. Diabetes Obes Metab, 2019,21(2):252-260.
doi: 10.1111/dom.13508 pmid: 30136354 |
[7] |
Patorno E, Pawar A, Franklin JM, et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care[J]. Circulation, 2019,139(25):2822-2830.
doi: 10.1161/CIRCULATIONAHA.118.039177 URL |
[8] |
Udell JA, Yuan Z, Rush T, et al. Cardiovascular outcomes and risks after initiation of a sodium glucose cotransporter 2 inhibitor:Results from the EASEL population-based cohort study (evidence for cardiovascular outcomes with sodium glucose cotransporter 2 inhibitors in the real world)[J]. Circulation, 2018,137(14):1450-1459.
doi: 10.1161/CIRCULATIONAHA.117.031227 URL |
[9] | Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes,2018.A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)[J]. Diabet, 2018,61(12):2461-2498. |
[10] |
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes,pre-diabetes,and cardiovascular diseases developed in collaboration with the EASD[J]. Eur Heart J, 2020,41:255-323.
doi: 10.1093/eurheartj/ehz486 URL |
[11] | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志, 2021,37(4):311-398. |
[12] |
Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1,SGLT2 and GLUT2[J]. Diabetologia, 2018,61(10):2087-2097.
doi: 10.1007/s00125-018-4656-5 URL |
[13] |
Poulsen SB, Fenton RA, Rieg T. Sodium-glucose cotransport[J]. Curr Opin Nephrol Hypertens, 2015,24(5):463-469.
doi: 10.1097/MNH.0000000000000152 URL |
[14] | Chawla G, Chaudhary KK. A complete review of empagliflozin:Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus[J]. Diabetes Meta Syndr, 2019,13(3):2001-2008. |
[15] |
Vijayakumar S, Vaduganathan M, Butler J. Glucose-lowering therapies and heart failure in type 2 diabetes mellitus:Mechanistic links,clinical data,and future directions[J]. Circulation, 2018,137(10):1060-1073.
doi: 10.1161/CIRCULATIONAHA.117.032099 pmid: 29506996 |
[16] |
Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes[J]. Diabetes Res Clin Pract, 2014,104(3):297-322.
doi: 10.1016/j.diabres.2014.02.014 URL |
[17] |
Ferrannini E, Seman L, Seewaldt-Becker E, et al. A Phase IIb,randomized,placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2013,15(8):721-728.
doi: 10.1111/dom.12081 pmid: 23398530 |
[18] | Fitchett D, Inzucchi SE, Wanner C, et al. Relationship between hypoglycaemia,cardiovascular outcomes,and empagliflozin treatment in the EMPA-REG OUTCOME® trial[J]. Eur Heart Jl, 2020,41(2):209-217. |
[19] |
Rosenstock J, Seman LJ, Jelaska A, et al. Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor,as add-on to metformin in type 2 diabetes with mild hyperglycaemia[J]. Diabetes Obes Metab, 2013,15(12):1154-1160.
doi: 10.1111/dom.12185 pmid: 23906374 |
[20] |
Søfteland E, Meier JJ, Vangen B, et al. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin:A 24-week randomized,double-blind,parallel-group trial[J]. Diabetes Care, 2017,40(2):201-209.
doi: 10.2337/dc16-1347 pmid: 27913576 |
[21] |
Rosenstock J, Jelaska A, Zeller C, et al. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin:A 78-week randomized,double-blind,placebo-controlled trial[J]. Diabetes Obes Metab, 2015,17(10):936-948.
doi: 10.1111/dom.12503 pmid: 26040302 |
[22] |
Mancia G, Cannon CP, Tikkanen I, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication[J]. Hypertension, 2016,68(6):1355-1364.
doi: 10.1161/HYPERTENSIONAHA.116.07703 URL |
[23] |
Abdul-Ghani M, Del Prato S, Chilton R, et al. SGLT2 inhibitors and cardiovascular risk:Lessons learned from the EMPA-REG OUTCOME study[J]. Diabetes care, 2016,39(5):717-725.
doi: 10.2337/dc16-0041 pmid: 27208375 |
[24] |
Sanidas EA, Papadopoulos DP, Hatziagelaki E, et al. Sodium glucose cotransporter 2 (SGLT2) inhibitors across the spectrum of hypertension[J]. Am J Hypertens, 2020,33(3):207-213.
doi: 10.1093/ajh/hpz157 pmid: 31541572 |
[25] |
Ross S, Thamer C, Cescutti J, et al. Efficacy and safety of empagliflozin twice daily versus once daily in patients with type 2 diabetes inadequately controlled on metformin:A 16-week,randomized,placebo-controlled trial[J]. Diabetes Obes Metab, 2015,17(7):699-702.
doi: 10.1111/dom.12469 pmid: 25827441 |
[26] |
Roden M, Merker L, Christiansen AV, et al. Safety,tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes:A double-blind extension of a Phase III randomized controlled trial[J]. Cardiovasc Diabetol, 2015,14:154.
doi: 10.1186/s12933-015-0314-0 URL |
[27] |
Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level:A meta-analysis of randomized controlled trials[J]. Diabetes Obes Metab, 2018,20(2):458-462.
doi: 10.1111/dom.2018.20.issue-2 URL |
[28] |
Ahmadieh H, Azar S. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus[J]. Diabetes Technol Ther, 2017,19(9):507-512.
doi: 10.1089/dia.2017.0070 URL |
[29] |
Fitchett D, Butler J, van de Borne P, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial[J]. Eur Heart J, 2018,39(5):363-370.
doi: 10.1093/eurheartj/ehx511 pmid: 29020355 |
[30] |
Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus,established cardiovascular disease,and chronic kidney disease[J]. Circulation, 2018,137(2):119-129.
doi: 10.1161/CIRCULATIONAHA.117.028268 URL |
[31] |
Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction[J]. J Am Coll Cardiol, 2021,77(3):243-255.
doi: 10.1016/j.jacc.2020.11.008 pmid: 33197559 |
[32] |
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016,375(4):323-334.
doi: 10.1056/NEJMoa1515920 URL |
[33] | Bae JH, Park EG, Kim S, et al. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes:A systematic review and meta-analysis of randomized controlled trials[J]. Sci Rep, 2019,9(1):1-9. |
[34] |
Schorling OK, Clark D, Zwiener I, et al. Pooled safety and tolerability analysis of empagliflozin in patients with type 2 diabetes mellitus[J]. Adv Ther, 2020,37(8):3463-3484.
doi: 10.1007/s12325-020-01329-7 URL |
[1] | 李志勇, 李星. 多模态超声在高血压患者大脑中动脉狭窄筛查中的临床价值[J]. 临床荟萃, 2023, 38(7): 613-617. |
[2] | 郭雨, 李永东. ARNI在高血压治疗中的研究进展[J]. 临床荟萃, 2023, 38(2): 181-184. |
[3] | 刘奕, 崔坤, 刘畅, 赵浩天, 李丽, 薛红元. 血清分泌型卷曲蛋白5水平与原发性高血压患者早期肾损害的相关性[J]. 临床荟萃, 2023, 38(12): 1073-1077. |
[4] | 江吉, 朱小刚, 姜山, 达哇扎巴, 岑强. 世居高原高血压人群蛋白尿相关危险因素[J]. 临床荟萃, 2023, 38(12): 1086-1090. |
[5] | 杨晓蓉, 周淑红, 潘亮, 郭莉江. 结缔组织病相关肺动脉高压的发病机制及其筛查的研究进展[J]. 临床荟萃, 2023, 38(10): 944-948. |
[6] | 徐阳, 薛凌. H型高血压合并2型糖尿病患者轻度认知功能障碍的影响因素[J]. 临床荟萃, 2023, 38(10): 887-892. |
[7] | 李瑞珍, 李星辉, 曾璟, 姚晓涛, 杨珂欣, 张展. 高血压认知功能障碍机制的研究进展[J]. 临床荟萃, 2023, 38(1): 88-92. |
[8] | 王宁, 李勇. 簇集蛋白在心血管疾病中的研究进展[J]. 临床荟萃, 2022, 37(9): 842-845. |
[9] | 尹贻锟, 尹逊伟, 王佳林, 孙君志. 太极拳锻炼周期对原发性高血压的血压及心血管危险因素的影响:系统性评价和Meta分析[J]. 临床荟萃, 2022, 37(7): 599-606. |
[10] | 程霞, 程兰兰, 张鹏伟, 马志刚. 钠-葡萄糖协同转运蛋白2抑制剂肾脏保护作用的研究进展[J]. 临床荟萃, 2022, 37(5): 467-471. |
[11] | 刘慧, 姚卫杰, 赵辉. 高血压致射血分数保留心力衰竭的发病机制及治疗措施探讨[J]. 临床荟萃, 2021, 36(9): 839-842. |
[12] | 叶蒙蒙, 李旎, 徐国栋, 邵国丰. miR-361在心血管疾病的研究进展[J]. 临床荟萃, 2021, 36(9): 843-849. |
[13] | 王亚柱, 郭云飞, 司月乔, 刘超, 张英. 心外膜脂肪组织体积与原发性高血压合并冠心病的相关性[J]. 临床荟萃, 2021, 36(8): 699-703. |
[14] | 李志勇, 李星, 何真. 肾动脉小慢波频谱联合超声心动图对成人型主动脉缩窄的临床价值[J]. 临床荟萃, 2021, 36(8): 739-743. |
[15] | 刘阔, 崔炜. 高血压诊疗基础问题再探讨:血压测量、降压目标、降压策略[J]. 临床荟萃, 2021, 36(8): 744-748. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||