临床荟萃 ›› 2022, Vol. 37 ›› Issue (7): 591-598.doi: 10.3969/j.issn.1004-583X.2022.07.002
收稿日期:
2021-02-06
出版日期:
2022-07-20
发布日期:
2022-08-30
通讯作者:
殷旭东
E-mail:090005@yzu.edu.cn
Ye Qiana, Ling Zhaia, Liu Shenxianga, Lu Guotaob, Yin Xudonga()
Received:
2021-02-06
Online:
2022-07-20
Published:
2022-08-30
Contact:
Yin Xudong
E-mail:090005@yzu.edu.cn
摘要:
目的 探讨糖皮质激素(glucocorticoid, GC)的使用对接受免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)治疗的肿瘤患者的总生存期(overall survival, OS)和无进展生存期(progression-free survival, PFS)的影响。方法 使用PubMed、Wiley、Web of Science和Cochrane Library数据库检索2020年10月以前发表的有关肿瘤患者在接受ICIs治疗期间,GC使用对患者预后影响的文献,采用Review Manager 5.3软件和Stata14.0软件进行统计分析。结果 总共有23篇文献被纳入荟萃分析,Meta分析结果显示在晚期肿瘤患者接受ICIs治疗期间,GC的使用是死亡
中图分类号:
叶倩, 凌志, 刘申香, 路国涛, 殷旭东. 糖皮质激素对晚期肿瘤患者免疫疗效影响的Meta分析[J]. 临床荟萃, 2022, 37(7): 591-598.
Ye Qian, Ling Zhai, Liu Shenxiang, Lu Guotao, Yin Xudong. Meta analysis on effects of glucocorticoid on the immunotherapy of advanced cancer[J]. Clinical Focus, 2022, 37(7): 591-598.
作者 | 发表年份 (年) | 样本量 (例) | 国家 | 中位随访 时间(月) | 疾病 | 分期 | ICI类型 | 研究终点 | (PFS) | (OS) | NOS 评分 |
---|---|---|---|---|---|---|---|---|---|---|---|
Arbour[ | 2018 | 640 | 美国 | - | 肺癌 | 进展 | 纳武利尤单抗或帕博利珠单抗或阿特珠单抗或德瓦单抗 | OS/PFS | 1.31 | 1.66 | 7 |
Parakh[ | 2018 | 45 | 澳大利亚 | 8.7 | 黑色素瘤 | Ⅳ | 纳武利尤单抗+伊匹单抗或者纳武利尤单抗单药 | PFS | 7.69 | - | 7 |
Tamiya[ | 2019 | 213 | 日本 | 11.0 | 肺癌 | Ⅲ~Ⅳ | 帕博利珠单抗单药 | PFS | 3.161 | - | 7 |
Riccciuti[ | 2019 | 650 | 美国 | - | 肺癌 | Ⅳ | 抗-PD-L1或者抗-PD-1+抗-CTLA4 | OS/PFS | 1.4/0.62 | 1.6/0.9 | 8 |
Parakh[ | 2017 | 66 | 澳大利亚 | 7.0 | 黑色素瘤 | Ⅳ | 纳武利尤单抗或帕博利珠单抗 | OS/PFS | 2.06 | 1.72 | 7 |
Shafqat[ | 2018 | 157 | 美国 | 6.7 | 多种 | Ⅳ | 纳武利尤单抗或帕博利珠单抗或阿特珠单抗 | PFS | 0.383 | - | 6 |
Tozuka[ | 2020 | 197 | 日本 | 14.3 | 肺癌 | 进展 | 纳武利尤单抗或帕博利珠单抗或阿特珠单抗 | OS/PFS | 2.96 | 4.06 | 7 |
Sukari[ | 2019 | 168 | 美国 | 26.2 | 多种 | Ⅳ | 纳武利尤单抗+帕博利珠单抗 | OS | - | 0.81 | 8 |
Adachi[ | 2020 | 296 | 日本 | 22.6 | 肺癌 | Ⅳ | 纳武利尤单抗 | PFS | 2.85 | - | 8 |
Acharya[ | 2017 | 72 | 美国 | 8.9 | 黑色素瘤 | Ⅳ | 纳武利尤单抗或帕博利珠单抗或伊匹单抗 | OS | - | 2.32 | 8 |
Scott[ | 2018 | 210 | 美国 | - | 肺癌 | 进展 | 纳武利尤单抗 | OS | - | 2.30 | 6 |
Fucà[ | 2018 | 151 | 意大利 | 28.6 | 肺癌 | Ⅳ | 抗-PD-L1或抗-PD-1+抗-CTLA4 | OS/PFS | 1.88 | 2.38 | 8 |
Chasset[ | 2015 | 45 | 法国 | 21.9 | 黑色素瘤 | Ⅲ~Ⅳ | 伊匹单抗 | OS | - | 5.82 | 7 |
Dumenil[ | 2018 | 65 | 法国 | - | 肺癌 | ⅢB~Ⅳ | 纳武利尤单抗 | OS/PFS | 3.27 | 1.31 | 6 |
Hendriks[ | 2019 | 1 052 | 法国/荷兰 | 15.8 | 肺癌 | 进展 | 抗-PD-L1或抗-PD-1 | OS/PFS | 2.78 | 2.37 | 7 |
Tanguchi[ | 2015 | 201 | 日本 | - | 肺癌 | Ⅳ | 纳武利尤单抗 | PFS | 2.37 | - | 6 |
Zaragoza[ | 2015 | 58 | 法国 | 31.0 | 黑色素瘤 | Ⅲ~Ⅳ | 伊匹单抗 | OS | - | 1.07 | 6 |
Yamaguchic[ | 2020 | 131 | 日本 | 11.1 | 肺癌 | Ⅲ~Ⅳ | 纳武利尤单抗或帕博利珠单抗 | OS/PFS | 0.73 | 0.83 | 6 |
Faje[ | 2018 | 98 | 美国 | - | 黑色素瘤 | Ⅳ | 伊匹单抗 | OS/PFS | 3.22 | 4.17 | 6 |
Giglio[ | 2020 | 413 | 法国 | 24.4 | 肺癌 | ⅢB~Ⅳ | 抗-PD-L1 | OS/PFS | 2.64 | 4.53 | 8 |
Facchinetti[ | 2020 | 153 | 法国 | 18.2 | 肺癌 | ⅢB~Ⅳ | 帕博利珠单抗 | OS/PFS | 0.8 | 0.6 | 7 |
Patil[ | 2019 | 11 143 | 美国 | - | 肺癌 | 进展 | - | OS | - | 1.16 | 6 |
Drakaki[ | 2019 | 2 213 | 美国 | - | 多种 | 进展 | - | OS | - | 1.34/1.24/1.44 | 6 |
表1 研究的一般特征
作者 | 发表年份 (年) | 样本量 (例) | 国家 | 中位随访 时间(月) | 疾病 | 分期 | ICI类型 | 研究终点 | (PFS) | (OS) | NOS 评分 |
---|---|---|---|---|---|---|---|---|---|---|---|
Arbour[ | 2018 | 640 | 美国 | - | 肺癌 | 进展 | 纳武利尤单抗或帕博利珠单抗或阿特珠单抗或德瓦单抗 | OS/PFS | 1.31 | 1.66 | 7 |
Parakh[ | 2018 | 45 | 澳大利亚 | 8.7 | 黑色素瘤 | Ⅳ | 纳武利尤单抗+伊匹单抗或者纳武利尤单抗单药 | PFS | 7.69 | - | 7 |
Tamiya[ | 2019 | 213 | 日本 | 11.0 | 肺癌 | Ⅲ~Ⅳ | 帕博利珠单抗单药 | PFS | 3.161 | - | 7 |
Riccciuti[ | 2019 | 650 | 美国 | - | 肺癌 | Ⅳ | 抗-PD-L1或者抗-PD-1+抗-CTLA4 | OS/PFS | 1.4/0.62 | 1.6/0.9 | 8 |
Parakh[ | 2017 | 66 | 澳大利亚 | 7.0 | 黑色素瘤 | Ⅳ | 纳武利尤单抗或帕博利珠单抗 | OS/PFS | 2.06 | 1.72 | 7 |
Shafqat[ | 2018 | 157 | 美国 | 6.7 | 多种 | Ⅳ | 纳武利尤单抗或帕博利珠单抗或阿特珠单抗 | PFS | 0.383 | - | 6 |
Tozuka[ | 2020 | 197 | 日本 | 14.3 | 肺癌 | 进展 | 纳武利尤单抗或帕博利珠单抗或阿特珠单抗 | OS/PFS | 2.96 | 4.06 | 7 |
Sukari[ | 2019 | 168 | 美国 | 26.2 | 多种 | Ⅳ | 纳武利尤单抗+帕博利珠单抗 | OS | - | 0.81 | 8 |
Adachi[ | 2020 | 296 | 日本 | 22.6 | 肺癌 | Ⅳ | 纳武利尤单抗 | PFS | 2.85 | - | 8 |
Acharya[ | 2017 | 72 | 美国 | 8.9 | 黑色素瘤 | Ⅳ | 纳武利尤单抗或帕博利珠单抗或伊匹单抗 | OS | - | 2.32 | 8 |
Scott[ | 2018 | 210 | 美国 | - | 肺癌 | 进展 | 纳武利尤单抗 | OS | - | 2.30 | 6 |
Fucà[ | 2018 | 151 | 意大利 | 28.6 | 肺癌 | Ⅳ | 抗-PD-L1或抗-PD-1+抗-CTLA4 | OS/PFS | 1.88 | 2.38 | 8 |
Chasset[ | 2015 | 45 | 法国 | 21.9 | 黑色素瘤 | Ⅲ~Ⅳ | 伊匹单抗 | OS | - | 5.82 | 7 |
Dumenil[ | 2018 | 65 | 法国 | - | 肺癌 | ⅢB~Ⅳ | 纳武利尤单抗 | OS/PFS | 3.27 | 1.31 | 6 |
Hendriks[ | 2019 | 1 052 | 法国/荷兰 | 15.8 | 肺癌 | 进展 | 抗-PD-L1或抗-PD-1 | OS/PFS | 2.78 | 2.37 | 7 |
Tanguchi[ | 2015 | 201 | 日本 | - | 肺癌 | Ⅳ | 纳武利尤单抗 | PFS | 2.37 | - | 6 |
Zaragoza[ | 2015 | 58 | 法国 | 31.0 | 黑色素瘤 | Ⅲ~Ⅳ | 伊匹单抗 | OS | - | 1.07 | 6 |
Yamaguchic[ | 2020 | 131 | 日本 | 11.1 | 肺癌 | Ⅲ~Ⅳ | 纳武利尤单抗或帕博利珠单抗 | OS/PFS | 0.73 | 0.83 | 6 |
Faje[ | 2018 | 98 | 美国 | - | 黑色素瘤 | Ⅳ | 伊匹单抗 | OS/PFS | 3.22 | 4.17 | 6 |
Giglio[ | 2020 | 413 | 法国 | 24.4 | 肺癌 | ⅢB~Ⅳ | 抗-PD-L1 | OS/PFS | 2.64 | 4.53 | 8 |
Facchinetti[ | 2020 | 153 | 法国 | 18.2 | 肺癌 | ⅢB~Ⅳ | 帕博利珠单抗 | OS/PFS | 0.8 | 0.6 | 7 |
Patil[ | 2019 | 11 143 | 美国 | - | 肺癌 | 进展 | - | OS | - | 1.16 | 6 |
Drakaki[ | 2019 | 2 213 | 美国 | - | 多种 | 进展 | - | OS | - | 1.34/1.24/1.44 | 6 |
作者 | 样本量 (例) | GC种类 | 使用时间窗 | 剂量 | 治疗目的 |
---|---|---|---|---|---|
Arbour[ | 90 | 强的松 | ICI治疗前30天到开始治疗后 | >10 mg vs <10 mg | 肿瘤相关症状 |
Parakh[ | 13 | 强的松或地塞米松 | - | ≥10 mg/d或2~8 mg | NS |
Tamiya[ | 14 | - | ICI开始治疗后 | - | NS |
Riccciuti[ | 93 | 强的松 | ICI开始治疗后 | >10 mg vs <10 mg | 肿瘤相关症状/非肿瘤相关症状 |
Parakh[ | 15 | 地塞米松 | ICI开始治疗后 | 0.5~12 mg | 肿瘤相关症状(BMS) |
Shafqat[ | 21 | 强的松 | 平均8.5周 | - | 非肿瘤相关症状(irAEs) |
Tozuka[ | 4 | 强的松 | ICI开始治疗后 | 10 mg | 肿瘤相关症状 |
Sukari[ | 77 | - | - | - | 非肿瘤相关症状(irAEs) |
Adachi[ | 30 | - | ICI开始治疗后 | - | 肿瘤相关症状(60%)/非肿瘤相关症状(30%) |
Acharya[ | 21 | 地塞米松 | ICI开始治疗后 | 4 mg/d或4 mg/6~12 h | 肿瘤相关症状(90%) |
Scott[ | 66 | 强的松 | ICI开始治疗后 | ≥10 mg/d | 肿瘤相关症状/非肿瘤相关症状 |
Fuca[ | 35 | 强的松 | ICI开始治疗后28天内 | 中位数280 mg(20~875 mg) | 肿瘤相关症状/非肿瘤相关症状 |
Chasset[ | 12 | 强的松 | ICI开始治疗后30天内 | 平均数0.6 mg/kg(0.2~1.2 mg/kg) | 肿瘤相关症状(BMS) |
Dumenil[ | 10 | - | ICI开始治疗前1周 | 中位数25 mg(12.5~37.5 mg) | 肿瘤相关症状(BMS) |
Hendriks[ | 141 | - | ICI开始治疗后 | - | 肿瘤相关症状(BMS) |
Tanguchi[ | 12 | - | - | 中位数6.25 mg(1.56~12.5 mg) | 肿瘤相关症状/非肿瘤相关症状 |
Zaragoza[ | 15 | - | ICI开始治疗前 | - | - |
Yamaguchic[ | NR | - | - | - | 非肿瘤相关症状(irAEs) |
Faje[ | 64 | 强的松 | ICI开始治疗后 | 22.4 mg vs 5 mg | 非肿瘤相关症状(irAEs) |
Giglio[ | 114 | 强的松 | ICI开始治疗后8周 | ≥10 mg | 肿瘤相关症状/非肿瘤相关症状 |
Facchinetti[ | 47 | 强的松 | ICI开始治疗后 | ≥10 mg/d | NS |
Patil[ | 1581 | 强的松 | ICI开始治疗后30内 | ≥10 mg | NS |
Drakaki[ | 556 | - | ICI治疗前14天到开始治疗后30天内 | - | 肿瘤相关症状 |
表2 接受ICIs治疗患者的GC使用特点
作者 | 样本量 (例) | GC种类 | 使用时间窗 | 剂量 | 治疗目的 |
---|---|---|---|---|---|
Arbour[ | 90 | 强的松 | ICI治疗前30天到开始治疗后 | >10 mg vs <10 mg | 肿瘤相关症状 |
Parakh[ | 13 | 强的松或地塞米松 | - | ≥10 mg/d或2~8 mg | NS |
Tamiya[ | 14 | - | ICI开始治疗后 | - | NS |
Riccciuti[ | 93 | 强的松 | ICI开始治疗后 | >10 mg vs <10 mg | 肿瘤相关症状/非肿瘤相关症状 |
Parakh[ | 15 | 地塞米松 | ICI开始治疗后 | 0.5~12 mg | 肿瘤相关症状(BMS) |
Shafqat[ | 21 | 强的松 | 平均8.5周 | - | 非肿瘤相关症状(irAEs) |
Tozuka[ | 4 | 强的松 | ICI开始治疗后 | 10 mg | 肿瘤相关症状 |
Sukari[ | 77 | - | - | - | 非肿瘤相关症状(irAEs) |
Adachi[ | 30 | - | ICI开始治疗后 | - | 肿瘤相关症状(60%)/非肿瘤相关症状(30%) |
Acharya[ | 21 | 地塞米松 | ICI开始治疗后 | 4 mg/d或4 mg/6~12 h | 肿瘤相关症状(90%) |
Scott[ | 66 | 强的松 | ICI开始治疗后 | ≥10 mg/d | 肿瘤相关症状/非肿瘤相关症状 |
Fuca[ | 35 | 强的松 | ICI开始治疗后28天内 | 中位数280 mg(20~875 mg) | 肿瘤相关症状/非肿瘤相关症状 |
Chasset[ | 12 | 强的松 | ICI开始治疗后30天内 | 平均数0.6 mg/kg(0.2~1.2 mg/kg) | 肿瘤相关症状(BMS) |
Dumenil[ | 10 | - | ICI开始治疗前1周 | 中位数25 mg(12.5~37.5 mg) | 肿瘤相关症状(BMS) |
Hendriks[ | 141 | - | ICI开始治疗后 | - | 肿瘤相关症状(BMS) |
Tanguchi[ | 12 | - | - | 中位数6.25 mg(1.56~12.5 mg) | 肿瘤相关症状/非肿瘤相关症状 |
Zaragoza[ | 15 | - | ICI开始治疗前 | - | - |
Yamaguchic[ | NR | - | - | - | 非肿瘤相关症状(irAEs) |
Faje[ | 64 | 强的松 | ICI开始治疗后 | 22.4 mg vs 5 mg | 非肿瘤相关症状(irAEs) |
Giglio[ | 114 | 强的松 | ICI开始治疗后8周 | ≥10 mg | 肿瘤相关症状/非肿瘤相关症状 |
Facchinetti[ | 47 | 强的松 | ICI开始治疗后 | ≥10 mg/d | NS |
Patil[ | 1581 | 强的松 | ICI开始治疗后30内 | ≥10 mg | NS |
Drakaki[ | 556 | - | ICI治疗前14天到开始治疗后30天内 | - | 肿瘤相关症状 |
项目 | 例数 | OS | | | PFS | | |
---|---|---|---|---|---|---|---|
癌种 | |||||||
非小细胞肺癌 | 15 | 1.49(1.2~1.86) | 0.0003 | 79% | 1.75(1.31~2.34) | 0.0001 | 76% |
黑色素瘤 | 7 | 2.12(1.28~3.5) | 0.004 | 73% | 3.47(1.68~7.16) | 0.0008 | 57% |
尿路上皮癌 | 1 | 1.44(1.12~1.89) | - | - | - | - | - |
ICI类型 | |||||||
抗PD-1/PD-L1 | 14 | 1.54(1.06~2.26) | 0.03 | 81% | 1.72(1.21~2.45) | 0.003 | 81% |
抗CTLA-4 | 3 | 3.02(1.12~8.18) | 0.03 | 71% | 3.22(1.42~7.3) | 0.005 | 81% |
其他 | 6 | 1.32(1.15~1.52) | <0.01 | 51% | 1.95(1.04~3.65) | 0.04 | 77% |
适应证 | |||||||
肿瘤相关症状 | 8 | 2.14(1.62~2.81) | <0.01 | 26% | 2.26(1.72~2.96) | <0.01 | 18% |
非肿瘤相关症状 | 5 | 1.13(0.65~1.96) | 0.68 | 70% | 0.94(0.46~1.93) | 0.87 | 78% |
国家 | |||||||
亚洲 | 2 | 1.74(0.37~8.24) | 0.48 | 89% | 2.04(1.07~3.9) | 0.03 | 83% |
欧洲 | 7 | 1.95(1.03~3.67) | 0.04 | 86% | 1.80(0.96~3.36) | 0.07 | 83% |
美洲 | 9 | 1.39(1.2~1.63) | <0.01 | 63% | 1.24(0.37~8.24) | 0.34 | 72% |
澳洲 | 2 | 1.72(0.93~3.17) | 0.05 | - | 3.79(1.05~13.75) | 0.04 | 79% |
研究类型 | |||||||
单中心 | 10 | 1.91(1.25~2.93) | 0.003 | 77% | 1.59(1.01~2.50) | 0.04 | 71% |
多中心 | 13 | 1.28(1.09~1.50) | 0.003 | 67% | 2.01(1.35~2.99) | 0.006 | 83% |
表3 接受ICIs治疗的患者中使用GC者与未使用GC者OS亚组分析
项目 | 例数 | OS | | | PFS | | |
---|---|---|---|---|---|---|---|
癌种 | |||||||
非小细胞肺癌 | 15 | 1.49(1.2~1.86) | 0.0003 | 79% | 1.75(1.31~2.34) | 0.0001 | 76% |
黑色素瘤 | 7 | 2.12(1.28~3.5) | 0.004 | 73% | 3.47(1.68~7.16) | 0.0008 | 57% |
尿路上皮癌 | 1 | 1.44(1.12~1.89) | - | - | - | - | - |
ICI类型 | |||||||
抗PD-1/PD-L1 | 14 | 1.54(1.06~2.26) | 0.03 | 81% | 1.72(1.21~2.45) | 0.003 | 81% |
抗CTLA-4 | 3 | 3.02(1.12~8.18) | 0.03 | 71% | 3.22(1.42~7.3) | 0.005 | 81% |
其他 | 6 | 1.32(1.15~1.52) | <0.01 | 51% | 1.95(1.04~3.65) | 0.04 | 77% |
适应证 | |||||||
肿瘤相关症状 | 8 | 2.14(1.62~2.81) | <0.01 | 26% | 2.26(1.72~2.96) | <0.01 | 18% |
非肿瘤相关症状 | 5 | 1.13(0.65~1.96) | 0.68 | 70% | 0.94(0.46~1.93) | 0.87 | 78% |
国家 | |||||||
亚洲 | 2 | 1.74(0.37~8.24) | 0.48 | 89% | 2.04(1.07~3.9) | 0.03 | 83% |
欧洲 | 7 | 1.95(1.03~3.67) | 0.04 | 86% | 1.80(0.96~3.36) | 0.07 | 83% |
美洲 | 9 | 1.39(1.2~1.63) | <0.01 | 63% | 1.24(0.37~8.24) | 0.34 | 72% |
澳洲 | 2 | 1.72(0.93~3.17) | 0.05 | - | 3.79(1.05~13.75) | 0.04 | 79% |
研究类型 | |||||||
单中心 | 10 | 1.91(1.25~2.93) | 0.003 | 77% | 1.59(1.01~2.50) | 0.04 | 71% |
多中心 | 13 | 1.28(1.09~1.50) | 0.003 | 67% | 2.01(1.35~2.99) | 0.006 | 83% |
[1] |
Nadal E, Massuti B, Dómine M, et al. Immunotherapy with checkpoint inhibitors in non-small cell lung cancer: Insights from long-term survivors[J]. Cancer Immunol Immunother, 2019, 68(3): 341-352.
doi: 10.1007/s00262-019-02310-2 pmid: 30725206 |
[2] |
Queirolo P, Boutros A, Tanda E, et al. Immune-checkpoint inhibitors for the treatment of metastatic melanoma: A model of cancer immunotherapy[J]. Semin Cancer Biol, 2019, 59:290-297.
doi: S1044-579X(19)30195-6 pmid: 31430555 |
[3] | Vassilakopoulos TP, Chatzidimitriou C, Asimakopoulos JV, et al. Immunotherapy in hodgkin lymphoma: Present status and future strategies[J]. Cancers (Basel), 2019, 11(8): 1071. |
[4] |
Reck M, Taylor F, Penrod JR, et al. Impact of nivolumab versus docetaxel on health-related quality of life and symptoms in patients with advanced squamous non-small cell lung cancer: Results from the checkmate 017 study[J]. J Thorac Oncol, 2018, 13(2): 194-204.
doi: S1556-0864(17)32878-2 pmid: 29129758 |
[5] |
Barlesi F, Garon EB, Kim DW, et al. Health-related quality of life in KEYNOTE-010: A phase Ⅱ/Ⅲ study of pembrolizumab versus docetaxel in patients with previously treated advanced, programmed death ligand 1-expressing NSCLC[J]. J Thorac Oncol, 2019, 14(5): 793-801.
doi: 10.1016/j.jtho.2019.01.016 URL |
[6] |
Mazieres J, Rittmeyer A, Gadgeel S, et al. Atezolizumab versus docetaxel in pretreated patients with NSCLC: Final results from the randomized phase 2 POPLAR and phase 3 OAK clinical trials[J]. J Thorac Oncol, 2021, 16(1): 140-150.
doi: 10.1016/j.jtho.2020.09.022 pmid: 33166718 |
[7] |
El Kaddissi A, Basse C. Nouvelles AMMs: durvalumab-En première ligne métastatique dans le cancer bronchique à petites cellules [New European approvals: Durvalumab-In first line metastatic small-cell lung cancer][J]. Bull Cancer, 2020, 107(12): 1208-1209.
doi: 10.1016/j.bulcan.2020.10.003 URL |
[8] |
Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer[J]. J Clin Oncol, 2018, 36(28): 2872-2878.
doi: 10.1200/JCO.2018.79.0006 pmid: 30125216 |
[9] |
Wenker EP, Dupree JM, Langille GM, et al. The use of HCG-based combination therapy for recovery of spermatogenesis after testosterone use[J]. J Sex Med, 2015, 12(6): 1334-1337.
doi: 10.1111/jsm.12890 URL |
[10] |
Pinato DJ, Kaseb A, Wang Y, et al. Impact of corticosteroid therapy on the outcomes of hepatocellular carcinoma treated with immune checkpoint inhibitor therapy[J]. J Immunother Cancer, 2020, 8(2) :e000726.
doi: 10.1136/jitc-2020-000726 URL |
[11] | Parakh S, Randhawa M, Nguyen B, et al. Real-world efficacy and toxicity of combined nivolumab and ipilimumab in patients with metastatic melanoma[J]. Asia Pac J Clin Oncol, 2019, 15(1): 26-30. |
[12] |
Tamiya M, Tamiya A, Hosoya K, et al. Efficacy and safety of pembrolizumab as first-line therapy in advanced non-small cell lung cancer with at least 50% PD-L1 positivity: A multicenter retrospective cohort study (HOPE-001)[J]. Invest New Drugs, 2019, 37(6): 1266-1273.
doi: 10.1007/s10637-019-00843-y URL |
[13] |
Ricciuti B, Dahlberg SE, Adeni A, et al. Immune checkpoint inhibitor outcomes for patients with non-small-cell lung cancer receiving baseline corticosteroids for palliative versus nonpalliative indications[J]. J Clin Oncol, 2019, 37(22): 1927-1934.
doi: 10.1200/JCO.19.00189 pmid: 31206316 |
[14] |
Parakh S, Park JJ, Mendis S, et al. Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases[J]. Br J Cancer, 2017, 116(12): 1558-1563.
doi: 10.1038/bjc.2017.142 URL |
[15] |
Shafqat H, Gourdin T, Sion A. Immune-related adverse events are linked with improved progression-free survival in patients receiving anti-PD-1/PD-L1 therapy[J]. Semin Oncol, 2018, 45(3): 156-163.
doi: S0093-7754(18)30009-5 pmid: 30348532 |
[16] |
Tozuka T, Kitazono S, Sakamoto H, et al. Poor efficacy of anti-programmed cell death-1/ligand 1 monotherapy for non-small cell lung cancer patients with active brain metastases[J]. Thorac Cancer, 2020, 11(9): 2465-2472.
doi: 10.1111/1759-7714.13557 URL |
[17] |
Sukari A, Nagasaka M, Alhasan R, et al. Cancer site and adverse events induced by immune checkpoint inhibitors: A retrospective analysis of real-life experience at a single institution[J]. Anticancer Res, 2019, 39(2): 781-790.
doi: 10.21873/anticanres.13175 pmid: 30711957 |
[18] |
Adachi Y, Tamiya A, Taniguchi Y, et al. Predictive factors for progression-free survival in non-small cell lung cancer patients receiving nivolumab based on performance status[J]. Cancer Med, 2020, 9(4): 1383-1391.
doi: 10.1002/cam4.2807 URL |
[19] |
Acharya S, Mahmood M, Mullen D, et al. Distant intracranial failure in melanoma brain metastases treated with stereotactic radiosurgery in the era of immunotherapy and targeted agents[J]. Adv Radiat Oncol, 2017, 2(4): 572-580.
doi: 10.1016/j.adro.2017.07.003 pmid: 29204524 |
[20] |
Scott SC, Pennell NA. Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab[J]. J Thorac Oncol, 2018, 13(11): 1771-1775.
doi: S1556-0864(18)30711-1 pmid: 29935305 |
[21] | Fucà G, Galli G, Poggi M, et al. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors[J]. ESMO Open, 2019, 4(1): e000457. |
[22] |
Chasset F, Pages C, Biard L, et al. Single-center study under a French Temporary Authorization for Use (TAU) protocol for ipilimumab in metastatic melanoma: Negative impact of baseline corticosteroids[J]. Eur J Dermatol, 2015, 25(1): 36-44.
doi: 10.1684/ejd.2014.2471 pmid: 25500362 |
[23] | Dumenil C, Massiani MA, Dumoulin J, et al. Clinical factors associated with early progression and grade 3-4 toxicity in patients with advanced non-small-cell lung cancers treated with nivolumab[J]. PLoS One, 2018, 13(4): e0195945. |
[24] |
Hendriks LEL, Henon C, Auclin E, et al. Outcome of patients with non-small cell lung cancer and brain metastases treated with checkpoint inhibitors[J]. J Thorac Oncol, 2019, 14(7): 1244-1254.
doi: S1556-0864(19)30117-0 pmid: 30780002 |
[25] |
Taniguchi Y, Tamiya A, Isa SI, et al. Predictive factors for poor progression-free survival in patients with non-small cell lung cancer treated with nivolumab[J]. Anticancer Res, 2017, 37(10): 5857-5862.
pmid: 28982912 |
[26] |
Zaragoza J, Caille A, Beneton N, et al. High neutrophil to lymphocyte ratio measured before starting ipilimumab treatment is associated with reduced overall survival in patients with melanoma[J]. Br J Dermatol, 2016, 174(1): 146-151.
doi: 10.1111/bjd.14155 pmid: 26343230 |
[27] |
Yamaguchi O, Imai H, Minemura H, et al. Efficacy and safety of immune checkpoint inhibitor monotherapy in pretreated elderly patients with non-small cell lung cancer[J]. Cancer Chemother Pharmacol, 2020, 85(4): 761-771.
doi: 10.1007/s00280-020-04055-7 URL |
[28] |
Faje AT, Lawrence D, Flaherty K, et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma[J]. Cancer, 2018, 124(18): 3706-3714.
doi: 10.1002/cncr.31629 pmid: 29975414 |
[29] | de Giglio A, Mezquita L, Auclin E, et al. Impact of intercurrent introduction of steroids on clinical outcomes in advanced non-small-cell lung cancer (NSCLC) patients under immune-checkpoint inhibitors (ICI)[J]. Cancers (Basel), 2020, 12(10): 2827. |
[30] |
Facchinetti F, Mazzaschi G, Barbieri F, et al. First-line pembrolizumab in advanced non-small cell lung cancer patients with poor performance status[J]. Eur J Cancer, 2020, 130: 155-167.
doi: S0959-8049(20)30096-4 pmid: 32220780 |
[31] |
Patil PD, Fernandez AP, Velcheti V, et al. Cases from the irAE tumor board: A multidisciplinary approach to a patient treated with immune checkpoint blockade who presented with a new rash[J]. Oncologist, 2019, 24(1): 4-8.
doi: 10.1634/theoncologist.2018-0434 pmid: 30355774 |
[32] |
Drakaki A, Luhn P, Wakelee H,et al, Association of systemic corticosteroids with overall survival in patients receiving cancer immunotherapy for advanced melanoma, non-small cell lung cancer or urothelial cancer in routine clinical practice[J]. Ann Oncol, 2019, 30(11): 16-32.
doi: 10.1093/annonc/mdy472 URL |
[33] |
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605.
doi: 10.1007/s10654-010-9491-z pmid: 20652370 |
[34] | Petrelli F, Signorelli D, Ghidini M, et al. Association of steroids use with survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis[J]. Cancers (Basel), 2020, 12(3):546. |
[35] |
Maddocks K, Jones JA. Jones, Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia[J]. Semin Oncol, 2016, 43(2): 251-259.
doi: 10.1053/j.seminoncol.2016.02.008 pmid: 27040703 |
[36] |
Lynch MP, DeDonato DM, Kutney-Lee A. Geriatric oncology program development and gero-oncology nursing[J]. Semin Oncol Nurs, 2016, 32(1): 44-54.
doi: 10.1016/j.soncn.2015.11.006 pmid: 26830267 |
[37] |
Jove M, Vilariño N, Nadal E. Nadal, Impact of baseline steroids on efficacy of programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade in patients with advanced non-small cell lung cancer[J]. Transl Lung Cancer Res, 2019, 8(Suppl 4): S364-S368.
doi: 10.21037/tlcr.2019.06.06 URL |
[38] |
Giles AJ, Hutchinson MND, Sonnemann HM, et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy[J]. J Immunother Cancer, 2018, 6(1): 51.
doi: 10.1186/s40425-018-0371-5 pmid: 29891009 |
[1] | 陈思晗, 熊虎, 税典雅, 高小瞻, 刘泽伟. 超微血管成像技术诊断乳腺肿瘤的meta分析[J]. 临床荟萃, 2024, 39(2): 108-114. |
[2] | 赵旭辉, 黄小敏, 达德转, 许焱, 崔晓东, 李红玲. 基于生物信息学筛选影响胃癌患者预后的糖酵解相关基因[J]. 临床荟萃, 2024, 39(1): 20-29. |
[3] | 黄赛虎, 龙中洁, 董兴强, 孟祥营, 吴水燕, 柏振江. 血液肿瘤患儿合并脓毒血症的病原学特点及临床特征[J]. 临床荟萃, 2024, 39(1): 38-42. |
[4] | 刘丽丽, 袁宇婷, 赖耿良, 田川, 蓝翔, 叶中绿. 儿童急性淋巴细胞白血病第15天微小残留与预后的关系[J]. 临床荟萃, 2024, 39(1): 47-52. |
[5] | 崔兰丹, 杨春燕. 脓毒症患者甲状腺激素的变化特点及研究进展[J]. 临床荟萃, 2024, 39(1): 70-74. |
[6] | 吕畅, 周利明. TNF-α-308基因多态性与胃癌易感相关性的meta分析[J]. 临床荟萃, 2023, 38(9): 779-787. |
[7] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[8] | 侯有玲, 李奕, 关红玉, 罗红霞. 目标导向液体治疗在脑肿瘤切除术中应用效果的meta分析[J]. 临床荟萃, 2023, 38(8): 686-693. |
[9] | 王涛, 高玉伟, 王兴华, 胡秀红, 崔红蕊, 徐保振, 杨洪娟. 抗磷脂酶A2受体抗体与特发性膜性肾病的相关性[J]. 临床荟萃, 2023, 38(7): 606-612. |
[10] | 高秦宇, 包蓓艳, 金燕, 赵宇. IgA肾病合并抑郁状态患者的临床特征和预后影响因素分析[J]. 临床荟萃, 2023, 38(6): 510-515. |
[11] | 孙星星, 林海. 儿童重症肺炎的免疫功能变化及预后危险因素[J]. 临床荟萃, 2023, 38(6): 521-525. |
[12] | 李亚, 杜涛明, 邱世香, 陈超, 钟立明. 伴有抑郁症状肝癌患者脑功能连接研究[J]. 临床荟萃, 2023, 38(6): 532-536. |
[13] | 王英南, 赵琦, 白海威, 武丹娜, 魏金梅, 李省江, 李锐凌, 张瑞星. 胃癌合并脑梗死的临床特点及危险因素分析[J]. 临床荟萃, 2023, 38(5): 417-422. |
[14] | 周腾腾, 李来有, 刘志敏, 左静. 隧道式和传统PICC穿刺法对导管相关血流感染影响的研究进展[J]. 临床荟萃, 2023, 38(5): 469-472. |
[15] | 陆知非, 王高卿, 高过. 肝门部胆管癌的非手术治疗进展[J]. 临床荟萃, 2023, 38(5): 473-476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||